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ABSTRACT

In this paper, the Fuzzy Vector Median is proposed, defined
as an extension of Vector Median. It is based on a novel dis-
tance definition of multidimensional fuzzy numbers (fuzzy
vectors), which satisfy the property of angle decomposition.
The proposed distance of two fuzzy vectors depends on the
classical distance of the fuzzy set centers and on the fuzzi-
ness that every fuzzy set holds. As a result the Fuzzy Vector
Median of a set of fuzzy vectors is affected by the presence
of fuzziness.

1. INTRODUCTION

Multichannel signals appear in many important signal pro-
cessing applications. Typical examples are the multispectral
satellite images, color images and signals that represent ve-
locity. Multichannel techniques, that have been proposed
rather recently, and consider the correlation of the channels,
seem to be the most appropriate way to process multichan-
nel signals. One of the most popular technique is the vec-
tor median filter, that inherently utilizes the correlation of
the channels and gives some desirable properties such as,
the zero impulse response and the preservation of the signal
edges [6].

However, any crisp value conceals a degree of uncer-
tainty that can be described by using fuzzy numbers [2]-
[5]. In this paper, the uncertainty of the vector value will be
taken into account by using fuzzy instead of crisp vectors.
The termfuzzy vectorwill be used in the following, to de-
scribe the extension of ann-dimensional crisp setC to ann-
dimensional fuzzy setX defined in an(n+ 1)-dimensional
hyperspace, by using a membership functionµ : C→ [0, 1]
[1]. The term fuzzy vector is usually found in the literature,
describing the notion of a vector ofn 1-dimensional fuzzy
numbers. This notion could be appropriate to describe the
uncertainty in non-correlated data or when different degrees
of uncertainty is possible to be given to each signal channel.

2. ANGLE DECOMPOSED FUZZY VECTORS
(ADFV)

2.1. Definition of ADFVs

The fuzzy sets are usually described by the union of their
α-cuts instead of the membership function. Theα-cuts of
an1-dimensional fuzzy set are the classical setsXα, where
x ∈ Xα ⇔ µ(x) ≥ α. They can easily extended to de-
scribe multidimensional fuzzy sets. Thus, theα-cuts of an
n-dimensional fuzzy set will be the classical setsXα, where
x ∈ Xα ⇔ µ(x) ≥ α, andµ is a function ofn variables. A
fuzzy set is callednormal if ∃x : µ(x) = 1 orX1 6= ∅. It is
calledconvexif ∀α1, α2 ∈ [0, 1], α1 > α2 ⇔ Xα1 ⊆ Xα2 .
A normal and convex fuzzy set is calledfuzzy number[7]-
[9]. A 1-dimensional fuzzy number will be calledconvex
fuzzy numberwhen the correspondingα-cuts are convex
sets. In the following the Angle Decomposed Fuzzy Vectors
(ADFVs) will be defined as a subset of multidimensional
fuzzy numbers and will provide us the ability to define a
distance between them.

LetX be ann-dimensional fuzzy set,µX(x) its mem-
bership function andXα the correspondingα-cuts. Con-
sider also that there is only one vectorxc whereµX(xc) =
1. The vectorxc will be called the center of the fuzzy set.
Consider alson− 1 anglesθ = (θi, i = 1, 2, . . . , (n− 1)),
θi ∈ [0, π). The centre of the fuzzy setxc and each an-
gle θi determine a hyperplane. The union ofn − 1 hyper-
planes is a straight line (direction) in then-dimensional hy-
perspace, where a functionµ1 can be defined asµ1(x, θ) =
µX(x1(x, θ), x2(x, θ), . . . , xn−1(x, θ), x). This function
can be considered as a membership function of an1-dimen-
sional fuzzy setXθ. Then, the ADFVs are defined as fol-
lows:

Definition 1: An n-dimensional fuzzy setX is an An-
gle Decomposed Fuzzy Vector (ADFV), if, for each vector
of anglesθ = (θ1, θ2, . . . , θn−1), the 1-d fuzzy setXθ =
{x, µ1(x, θ)} is a convex fuzzy number.

An example of a 3-dimensional ADFV and the angle de-
composed 1-d convex fuzzy numbers is shown in Figure 1.
It is easy to prove that any ADFV is a fuzzy vector. We
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Figure 1: Two 1-d convex fuzzy numbersXθ,Y θ, com-
ing from two 3-d ADFVsX,Y when the angle vectorθ =
(θ1, θ2) is determined.

can also prove that ifθ is an − 1 − k vector the function
µk(x1, x2, . . . , xk, θ) can be considered as a membership
function of ak-dimensional ADFV. The use of ADFVs give
us the ability to establish a one to one correspondence be-
tween the points of two ADFVs that limit theirα-cuts on a
certain direction. By using this correspondence, a distance
measure between multidimensional ADFVs will be defined.

2.2. ADFVs distance definition and properties

Let us assume thatX , Y are 1-d fuzzy numbers, symbolized
asX =

⋃
α ·[x

α
l , x

α
r ], Y =

⋃
α ·[y

α
l , y

α
r ], wherexαl , yαl and

xαr , yαr , are the lower and upper limits of the corresponding
α-cuts. Then a distance can be defined as:

D[X,Y ] =

∫ 1
α=0

[||xαl , y
α
l ||+ ||x

α
r , y

α
r ||]dα (1)

where||., .|| is a distance norm of classical numbers. This
distance definition can be extended ton-dimensional AD-
FVs as:

Dn[X,Y] =
1

2(n− 1)π

∫ π
θ1=0

. . .

∫ π
θn−1=0

∫ 1
α=0

(||xθαl ,y
θα
l ||+

+||xθαr ,y
θα
r ||)dαdθn−1 . . . dθ1 (2)

wherexθαl , yθαl andxθαr , yθαr are the lower and upper
points that limit theα-cuts of the corresponding 1-dXθ

fuzzy numbers, and||., .|| denotes a distance norm between
classical vectors. In the following theα-cuts of theXθ

fuzzy vectors will be calledθα-cuts and will be symbol-
ized asXθα. The use of ADFVs guarantees that every point
that belongs to the line segment fromxθαl to xθαr belongs
also to theθα-cut.
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Figure 2: The upperxθαr ,y
θα
r and lowerxθαl ,y

θα
l limits of

two θα-cutsXθα, Y θα, the centers of the ADFVsxc, yc and
the distances between them.

LetX,Y, Z be ADFVs. We can prove that the follow-
ing distance properties are valid:

• Dn[X,Y] = 0⇔ X = Y

• Dn[X,Y] = Dn[Y,X]

• Dn[X,Z] ≤ Dn[X,Y] +Dn[Y,Z]

2.3. Euclidean fuzzy distance

Let us choose the Euclidean norm to define a distance be-
tween two classical n-dimensional vectorsx = (x1, x2,
. . . , xn) andy = (y1, y2, . . . , yn) as:

d2e(x,y) = (x1−y1)
2+(x2−y2)

2+ . . .+(xn−yn)
2 (3)

Then the Euclidean fuzzy distance can be defined by us-
ing (2) and (3). When the fuzzy vectors are described by
usingα-cuts, for a givenα and a vector of anglesθ =
(θ1, θ2, . . . , θn−1), two pointsxθαl andxθαr are defined, whi-
ch are the lower and the upper limits of the correspond-
ing θα-cut. The proposed Euclidean fuzzy distance is the
normalized integral of all the distancesd2e(x

θα
l ,y

θα
l ) be-

tween the lower limits, and the distancesd2e(x
θα
r ,y

θα
r ) be-

tween the upper limits, for everyα ∈ [0, 1] andθi ∈ [0, π),
i = 1, 2, . . . , n− 1.

Let us symbolize asdθαlx the Euclidean distance between
the lower limitxθαl of the θα-cut and the centerxc of an
ADFV X, asdθαrx the Euclidean distance between the upper
limit, xθαr of theθα-cut and the centerxc of an ADFVX,
and asdxy the distance between the centers of two ADFVs
X,Y. These distances, which can be calculated by using
(3), are shown in Figure 2.

It is easy to prove that the distance between two lower
limits of two ADFVsα-cuts is equal to:

d2e(x
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whereθi, i = 1, 2, . . . , n− 1 are known anglesθi ∈ [0, π).
The distance between two upper limits of two ADFVsα-
cuts is equal to:

d2e(x
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r ) = (d
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By using (2),(4) and (5) the Euclidean fuzzy distance be-
tween two ADFVsX,Y is given by:

Den [X,Y] = d
2
xy + d

2
fxy (6)

where:
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The above equation shows that the proposed Euclidean
fuzzy distance is the classical Euclidean distance between
the centers of two ADFVsX,Y, modified by a factor that
depends on the fuzziness that every ADFV holds. The Eu-
clidean fuzzy distance can be considered as a generalized
Euclidean distance since equation (7) yields to 0 when the
ADFVs are crisp vectors (dθαlx = d

θα
ly = d

θα
rx = d

θα
ry = 0,

∀θi, α). The Euclidean fuzzy distance is also equal to the
classical Euclidean distance of the ADFVs centers when the
fuzziness of ADFVX is equal to the fuzziness of ADFVY
for every angle andα-cut (dθαlx = d

θα
ly , d

θα
rx = d

θα
ry , ∀θi, α).

Generally, the Euclidean fuzzy distance can be equal to,
greater or less than the classical distance of the ADFVs
centers, depending on the ADFVs membership functions.
Figure 3 shows the distance between two 2-d ADFVs de-
pending on their fuzziness. The ADFVsX,Y are assumed
to have ellipticalα-cuts with axesfαx1, f

α
x2 andfαy1, f

α
y2 re-

spectively, which are reduced linearly from their maximum
valuesfx1, fx2, fy1, fy2 for α = 0, to zero forα = 1. In
Figure 3a the distance of the centers is 100,fαx1 andfαy2 vary

from 0 to 50, andfαx2 =
fαx1
2 , fαy1 =

fαy2
2 . In Figure 3b the

distance of the centers is again 100,fαy1 andfαy2 vary from
0 to 50, andfx1 = 10, fx2 = 30. These examples show that
the more the fuzziness of the two ADFVs differs, the more
their fuzzy Euclidean distance is greater. In special cases,
when the fuzziness is not uniformly distributed around the
center of a fuzzy set, but it is greater towards the center of
the other fuzzy set, the fuzzy Euclidean distance can be less
than the classical Euclidean distance.
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Figure 3: (a) The distance of two ADFVsX,Y depending
on their fuzzinessfx1 and fy2 when fαx2 =

fαx1
2 , fαx1 =

fαy2
2 . (b) The distance of two ADFVsX,Y depending on

the fuzziness ofY , fy1 andfy2 whenfx1 = 10, fx2 = 30.

3. FUZZY VECTOR MEDIAN DEFINITION AND
PROPERTIES

Based on the previously defined distance of ADFVs, we ex-
tend the classical definition of the vector median as follows:
Definition 2: The Fuzzy Vector Median (FVM) ofX1,X2,
. . . ,Xn ADFVs is the ADFVXFVM such thatXFVM ∈
{Xi, i = 1, 2, . . . , n} and for allj = 1, 2, . . . , n

n∑
i=1

Dn[XFVM ,Xi] ≤
n∑
i=1

Dn[Xj ,Xi] (8)

A straightforward algorithm to find the FVM of a set of
fuzzy vectors is the following:

• for each fuzzy vectorXi compute the sum of the dis-
tancesSi to all other vectors:

Si =
n∑
j=1

Dn[Xj ,Xi] (9)

• Find k such thatSk is the minimum ofSi, i = 1, 2,
. . . , n.

• The Fuzzy Vector Median isXk.



When the Euclidean fuzzy distance is used the Euclidean
FVM is defined. Similarly to the classical vector median,
the Euclidean FVMXFVM does not minimize the uncon-
ditional expression:

Sei =

n∑
i=1

Den [Xi,Y] (10)

but, by definition, it minimizes the same expression, when
Y should be one ofXi. The proposed distance of two fuzzy
vectors depends on the distance of the crisp fuzzy set cen-
ters, and on the fuzziness that every fuzzy vector holds. As
a result the Fuzzy Vector Median of a set of fuzzy vectors is
affected by the presence of fuzziness. The fuzzy vector, that
its center is the classical vector median of the fuzzy vector
centers, may be substituted by another fuzzy vector when its
fuzziness is different from the fuzziness of its neighbouring
vectors.

In the following, the condition which should be valid to
take place such a substitution will be found. Let us symbol-
ize asdij the distance of the centers of two ADFVsXi,Xj
that can be calculated by (3), anddfij the distance depend-
ing on the fuzziness given by (7). The classical vector me-
dian of the centers of the ADFVs can be found by calculat-
ing the sums

Sei =

n∑
j=1

dij =

n∑
j=1

d2e(xci ,xcj ) (11)

Without loss of generality, we can assume thatSei < Sei+1 ,
∀i = 1, 2, . . . , n − 1, which means thatxci is the classi-
cal vector median of the centers. Thus, by using (11) the
following is also valid:

Se(i+k) − Sei = C(i+k)i > 0 k = 1, . . . , n− i (12)

The ADFVXi+k will be the FVM if and only ifSe(i+k) <
Sej , j = 1, 2, . . . , n, j 6= i+ k. By using (6) and (12) it can
be proven that the above condition is equivalent to:

n∑
j=1

df(i+k)j <

n∑
j=1

dfij − C(i+k)i (13)

The above equation shows that, the vector that corresponds
to the classical Vector Median is the most probable candi-
date to be the Fuzzy Vector Median sinceCii = 0. It is also
more probable to be substituted by its ordered neighbours,
and the probability is reduced as the classical distance of the
centersC increases.

4. APPLICATIONS

Vector median filters are usually used to remove impulses
from noisy color images. In the following, we shall present

experimental results when the FVM will be applied on the
lenna image (256 × 256 pixels), corrupted by impulsive
noise and mixed impulsive and Gaussian noise. The FVM,
that uses fuzzy Euclidean distance, was applied on a3 × 3
window. Fuzziness was inserted to the problem by using the
information that the neighbouring pixels hold. The chro-
matic RGB values of the nine pixels of each window was
ordered and the average of the differences, between each
pixel chromatic value and its two closest values, was used as
a measure of the pixel fuzziness. It is obvious that the fuzzi-
ness of a pixel changes as the window moves, and when the
size of the window is modified. By using this kind of fuzzi-
ness, the Fuzzy Vector Median filter removes the impulsive
noise and preserves the edges with better performance in
comparison with the Vector Median filter. Moreover, FVM
reduces the local variances of the filtered image in homoge-
neous regions.

Let us symbolize asro, go, bo the chromatic RGB values
of the original image, asrn, gn, bn the values of the noisy
image and asrf , gf , bf the values of the filtered image. The
Signal to Noise error Ratio (SNR) defined as:

SNR=
(ro − rf )2 + (go − gf)2 + (bo − bf)2

(ro − rn)2 + (go − gn)2 + (bo − bn)2
(14)

was used to demonstrate the better performance of FVM
versus classical VM. The results of the FVM and VM filters
applied on the imagelenna, corrupted with different values
of impulsive and Gaussian noise, are presented in Table 1.
It shows that the FVM reduces the error ratio in all cases.
The local variances are calculated for every pixel, by using
a 3 × 3 window centered on it. Letr, g, b be the average
of the RGB values of the pixels that belong in the window.
Then the local variance of a pixel is:

σ2(k, l) = (rf − r)2 + (gf − g)2 + (bf − b)2 (15)

The average of the local variancesσ of all the pixels is pre-
sented in Table 2. It shows that the FVM also reduces the
local variances in most cases.

Figure 4a shows the result of the FVM filter applied on
a corrupted with mixed impulsive(p = 0.2) and Gaussian
(s = 10) noise. The local variances of the VM and FVM
filtered images are shown in Figures 4b and c respectively.
Figure 4d shows the differences between the local variances
of the FVM filtered images shown in Figure 4b and c. The
variances are subtracted and the red channel corresponds to
the positive differences, where the FVM local variances are
greater. The green channel corresponds to the negative dif-
ferences, where the VM local variances are greater. The
blue channel corresponds to the local variances of the orig-
inal lenna (edges). It is shown, that there are many cases
where the FVM local variances are greater on the edges
(pink pixels) something that is desirable and means that the
FVM filter preserves the edges better than VM filter does. It
is also shown that the VM local variances are greater (green



Table 1: The SNR of the FVM and VM filters applied on the
image lenna, corrupted with different values of impulsive
(percentage of corrupted pixels p=0.1, 0.2) and Gaussian
noise (noise standard deviation s=0,10,20).

Impulsive Gaussian FVM VM
noise (p) noise (s) (SNR) (SNR)

0.1 0 0.1850 0.1853
0.1 10 0.1901 0.1910
0.1 20 0.1997 0.2004
0.2 0 0.1067 0.1070
0.2 10 0.1125 0.1134
0.2 20 0.1283 0.1293

Table 2: The average of the local variancesσ when the FVM
and VM filters are applied on the imagelenna, corrupted
with different values of impulsive (percentage of corrupted
pixels p=0.1, 0.2) and Gaussian noise (noise standard devi-
ation s=0,10,20).

Impulsive Gaussian FVM VM
noise (p) noise (s) (σ) (σ)

0.1 0 6.603 6.604
0.1 10 8.590 8.609
0.1 20 11.412 11.410
0.2 0 7.398 7.417
0.2 10 9.564 9.600
0.2 20 12.751 12.757

pixels) in most cases in homogeneous regions something
that is undesirable and is reduced by using FVM filter (red
pixels).
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