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ABSTRACT 2. ANGLE DECOMPOSED FUZZY VECTORS
(ADFV)

In this paper, the Fuzzy Vector Median is proposed, defined
as an extension of Vector Median. Itis based on a novel dis-
tance definition of multidimensional fuzzy numbers (fuzzy e fuzzy sets are usually described by the union of their
vectors), which satisfy the property of angle decomposition. ., _.,ts instead of the membership function. Theuts of
The proposed distance of two fuzzy vectors depends on they, 1 _dimensional fuzzy set are the classical S68& where
classical distance of the fuzzy set centers and on the fuzzi-, - yao . u(z) > a. They can easily extended to de-
ness that every fuzzy set holds. As a result the Fuzzy Vectorgqrine multidimensional fuzzy sets. Thus, teuts of an
Median of a set of fuzzy vectors is affected by the presence,,_jimensional fuzzy set will be the classical SKi%, where

of fuzziness. x € X* & pu(x) > a, andy is a function ofn variables. A
fuzzy set is calleshormalif Ix : u(x) = 1 or X! # (. Itis
calledconvexf Vay, as € [0,1], a1 > ag < X C X2,
A normal and convex fuzzy set is calléalzzy numbef7]-
[9]. A 1-dimensional fuzzy number will be callezbnvex
fuzzy numbewhen the corresponding-cuts are convex
Multichannel signals appear in many important signal pro- Sets. In the following the Angle Decomposed Fuzzy Vectors
cessing applications. Typical examples are the multispectral(ADFVs) will be defined as a subset of multidimensional
satellite images, color images and signals that represent vefuzzy numbers and will provide us the ability to define a
locity. Multichannel techniques, that have been proposeddistance between them.
rather recently, and consider the correlation of the channels, Let X be ann-dimensional fuzzy sejyx (x) its mem-
seem to be the most appropriate way to process multichanbership function an&* the corresponding--cuts. Con-
nel signals. One of the most popular technique is the vec-sider also that there is only one vectorwhereux (x.) =
tor median filter, that inherently utilizes the correlation of 1. The vectorx. will be called the center of the fuzzy set.
the channels and gives some desirable properties such agonsider alsm — 1 angle® = (6;,i = 1,2,...,(n — 1)),
the zero impulse response and the preservation of the signad; € [0, 7). The centre of the fuzzy set. and each an-
edges [6]. gle 6; determine a hyperplane. The unionrof- 1 hyper-
However, any crisp value conceals a degree of uncer-Planes is a straight line (_direction) in tlm_adimensional hy-
tainty that can be described by using fuzzy numbers [2]- Perspace, where a functipn can be defined a8, (z, 6) =
[5]. In this paper, the uncertainty of the vector value will be #x (z1(z,8), z2(2,6),..., zn_1(z,6), ). This function
taken into account by using fuzzy instead of crisp vectors, ¢&n be considered as a membership function df-eimen-
The termfuzzy vectowill be used in the following, to de-  Sional fuzzy setX’. Then, the ADFVs are defined as fol-

2.1. Definition of ADFVs

1. INTRODUCTION

scribe the extension of ardimensional crisp sef to ann- lows:

dimensional fuzzy seX defined in ar(n + 1)-dimensional Definition 1: An n-dimensional fuzzy seX is an An-
hyperspace, by using a membership funciianC — [0, 1] gle Decomposed Fuzzy Vector (ADFV), if, for each vector
[1]. The term fuzzy vector is usually found in the literature, Of anglesd = (61,6, ...,6,_1), the 1-d fuzzy sefX? =

describing the notion of a vector af1-dimensional fuzzy ~ {z,u1(z,0)} is a convex fuzzy number.

numbers. This notion could be appropriate to describe the ~ An example of a 3-dimensional ADFV and the angle de-
uncertainty in non-correlated data or when different degreescomposed 1-d convex fuzzy numbers is shown in Figure 1.
of uncertainty is possible to be given to each signal channel.lt is easy to prove that any ADFV is a fuzzy vector. We
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Figure 1: Two 1-d convex fuzzy numbess® Y%, com-
ing from two 3-d ADFVsX,Y when the angle vectdt =
(61, 02) is determined.

can also prove that # is an — 1 — k vector the function
pur(z1, 22, ...,z 0) can be considered as a membership
function of ak-dimensional ADFV. The use of ADFVs give
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Figure 2: The uppex?®, y%> and lowerx/®, y?* limits of
two fa-cuts X« Y9« the centers of the ADFVs,, y. and
the distances between them.

Let X, Y, Z be ADFVs. We can prove that the follow-
ing distance properties are valid:

e DX, Y]=0&X=Y
e D,[X,Z] < D,[X, Y]+ D,[Y,Z]

us the ability to establish a one to one correspondence be-

tween the points of two ADFVs that limit thedr-cuts on a

certain direction. By using this correspondence, a distance

measure between multidimensional ADFVs will be defined.

2.2. ADFVs distance definition and properties

Letus assume th&, Y are 1-d fuzzy numbers, symbolized
asX = U, =", 271, Y = U, [y, y7'], wherez}, yi* and
%, y&, are the lower and upper limits of the corresponding
a-cuts. Then a distance can be defined as:

1

DY = [ (laf o]+ ot oflldec (1)
wherel||., .|| is a distance norm of classical numbers. This

distance definition can be extendedrtalimensional AD-
FVs as:

T T 1
1 (7% (7%
DoX,Y] = —— ,
[ ] 2(n — 1)71'/910 /971_10\/6!0(”)(1 yill+

+[x2%, y2%|)dad—1 . . . db: )
wherex{>, y?« andx?®, y%> are the lower and upper

points that limit thea-cuts of the corresponding 1-&°
fuzzy numbers, anfl., .|| denotes a distance norm between
classical vectors. In the following the-cuts of the X?
fuzzy vectors will be calleda-cuts and will be symbol-
ized asX’. The use of ADFVs guarantees that every point
that belongs to the line segment frati® to x% belongs

also to theda-cut.

2.3. Euclidean fuzzy distance

Let us choose the Euclidean norm to define a distance be-
tween two classical n-dimensional vectors= (z1, 2,

s ,l’n) andy = (917927 s 7yn) as:
& (x,y) = (@1 -11)° + (2= 92)* +. . .+ (2 —ya)* ()

Then the Euclidean fuzzy distance can be defined by us-
ing (2) and (3). When the fuzzy vectors are described by
using a-cuts, for a givena and a vector of angle8 =
(61,02, ...,0,_1), two pointsx?~ andx?* are defined, whi-

ch are the lower and the upper limits of the correspond-
ing fa-cut. The proposed Euclidean fuzzy distance is the
normalized integral of all the distance$(x?/*, y!~) be-
tween the lower limits, and the distanag&$x’®, y?*) be-
tween the upper limits, for every € [0, 1] and6; € [0, ),
i=1,2,...,n—1.

Let us symbolize ag/> the Euclidean distance between
the lower limitx?® of the fa-cut and the centex.. of an
ADFV X, asd’¢ the Euclidean distance between the upper
limit, xfa of the fa-cut and the centex. of an ADFV X,
and asi,, the distance between the centers of two ADFVs
X,Y. These distances, which can be calculated by using
(3), are shown in Figure 2.

It is easy to prove that the distance between two lower
limits of two ADFVs a-cuts is equal to:

d2(x), 1) = (df — dig)? +

r o9

n—1
+2(dfe — di)day [ ] cos(0:) + d2, (4)
i=1



whered;, i = 1,2,...,n — 1 are known angleg; € [0, 7).
The distance between two upper limits of two ADF¥/s
cuts is equal to:

a2(x0%, y0) = (dle — dl5)?

)

n—1
+2(d2% — di)day ] cos(0:) + d2, (5)
=1

By using (2),(4) and (5) the Euclidean fuzzy distance be-
tween two ADFVsX,Y is given by:

D.,[X,Y] =d2, +d; (6)

zy

where:

1 " " '
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n—1

+(dias — drg)+
n—1
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The above equation shows that the proposed Euclidean/y. (b) The distance of two ADFV, Y depending on

fuzzy distance is the classical Euclidean distance betweer{ﬁe

the centers of two ADFVX, Y, modified by a factor that
depends on the fuzziness that every ADFV holds. The Eu-

fuzziness ot, f,1 andfy2 whenf;, = 10, fz2 = 30.

clidean fuzzy distance can be considered as a generalized 3. FUzZY VECTOR MEDIAN DEFINITION AND

Euclidean distance since equation (7) yields to 0 when the
ADFVs are crisp vectorsdf® = dje = df% = df = 0,

PROPERTIES

V0;, ). The Euclidean fuzzy distance is also equal to the Based on the previously defined distance of ADFVs, we ex-
classical Euclidean distance of the ADFVs centers when thetend the classical definition of the vector median as follows:

fuzziness of ADFVX is equal to the fuzziness of ADFY

lx

for every angle and-cut (d/" = dj, dig = do%, V6;, ). ..

Ty

greater or less than the classical distance of the ADFVs
centers, depending on the ADFVs membership functions.
Figure 3 shows the distance between two 2-d ADFVs de-
pending on their fuzziness. The ADFYS, Y are assumed

to have ellipticak-cuts with axesfyy, fis and 1, fis re-

Definition 2: The Fuzzy Vector Median (FVM) oX;, X,
., X, ADFVs is the ADFVXpgy/\ such thatXpy g €
Generally, the Euclidean fuzzy distance can be equal to,{X;,i = 1,2,.

..,ntandforallj =1,2,...,n

n

Y DulXpym X € ) DalX, X (8)
i=1 =1

A straightforward algorithm to find the FVM of a set of

spectively, which are reduced linearly from their maximum fzzy vectors is the following:

valuesfy1, fo2, fy1, fy2 for a = 0, to zero fora = 1. In
Figure 3athe distance of the centers is 109.andf; vary

from 0 to 50, andfs; = fgi v = % In Figure 3b the
distance of the centers is again 1§, and f;; vary from

0to 50, andf,; = 10, f.2 = 30. These examples show that
the more the fuzziness of the two ADFVs differs, the more
their fuzzy Euclidean distance is greater. In special cases,
when the fuzziness is not uniformly distributed around the
center of a fuzzy set, but it is greater towards the center of
the other fuzzy set, the fuzzy Euclidean distance can be less

than the classical Euclidean distance.

e for each fuzzy vectoK,; compute the sum of the dis-
tancesS; to all other vectors:

n

Si =Y Dn[X;,Xi] )

j=1

e Find & such thatSy is the minimum ofS;, ¢ = 1, 2,
L, N

e The Fuzzy Vector Median iX.



When the Euclidean fuzzy distance is used the Euclideanexperimental results when the FVM will be applied on the
FVM is defined. Similarly to the classical vector median, lennaimage @56 x 256 pixels), corrupted by impulsive
the Euclidean FVMXgy/), does not minimize the uncon- noise and mixed impulsive and Gaussian noise. The FVM,

ditional expression: that uses fuzzy Euclidean distance, was applied 8rxe8
. window. Fuzziness was inserted to the problem by using the
S, — ZDen X,,Y] (10) information that the neighbouring pixels hold. The chro-

matic RGB values of the nine pixels of each window was
ordered and the average of the differences, between each
but, by definition, it minimizes the same expression, when pixel chromatic value and its two closest values, was used as
Y should be one aK;. The proposed distance of two fuzzy a measure of the pixel fuzziness. It is obvious that the fuzzi-
vectors depends on the distance of the crisp fuzzy set cenness of a pixel changes as the window moves, and when the
ters, and on the fuzziness that every fuzzy vector holds. Assize of the window is modified. By using this kind of fuzzi-
aresult the Fuzzy Vector Median of a set of fuzzy vectors is ness, the Fuzzy Vector Median filter removes the impulsive
affected by the presence of fuzziness. The fuzzy vector, thanoise and preserves the edges with better performance in
its center is the classical vector median of the fuzzy vector comparison with the Vector Median filter. Moreover, FVM
centers, may be substituted by another fuzzy vector when itsreduces the local variances of the filtered image in homoge-
fuzziness is different from the fuzziness of its neighbouring neous regions.
vectors. Let us symbolize ag°, ¢°, b° the chromatic RGB values

In the following, the condition which should be valid to  of the original image, as™, g™, b" the values of the noisy
take place such a substitution will be found. Let us symbol- image and as’, ¢/, b/ the values of the filtered image. The
ize asd;; the distance of the centers of two ADF¥s, X; Signal to Noise error Ratio (SNR) defined as:
that can be calculated by (3), adg the distance depend-
ing on the fuzziness given by (7). The classical vector me-  g\g_ ("~ )2+ (g° — g%)? + (b° — b7)? (14)
dian of the centers of the ADFVs can be found by calculat- (ro—rm)2 4+ (g° — g™)% + (b° — bn)?
ing the sums

i=1

was used to demonstrate the better performance of FVM
n LN versus classical VM. The results of the FVM and VM filters

Ser = Y dij = Y d2 (e %e,) (11)  applied on the imagkenna corrupted with different values

j=1 j=1 of impulsive and Gaussian noise, are presented in Table 1.
Without loss of generality, we can assume that< S, ., llths h?WS lthat.the FVM red:Jc?sttrLeferror rat|0_ N |a:;|, cases.
Vi = 1,2,...,n — 1, which means that,, is the classi- 36 O?‘f?N I‘r’]":‘;(')”v‘vr“;e;grigi f]“it"" eLeT"[ egvggytﬁZZbe?/auzlng
cal vector median of the centers. Thus, by using (11) the * L 9 . ag

L - of the RGB values of the pixels that belong in the window.
following is also valid: . o

Then the local variance of a pixel is:

S _Sei:C(i+k)i>0 k:].,...,n—i (12)

€(itk)
The ADFV X1 will be the FVM if and only ifS, , ,, <

Se;»j=1,2,...,n,j #i+k. By using (6) and (12) it can
be proven that the above condition is equivalent to:

oAk 1) = (rf =7+ (g~ 9P+ O =D (15)

The average of the local variana@®f all the pixels is pre-
sented in Table 2. It shows that the FVM also reduces the
local variances in most cases.
n n Figure 4a shows the result of the FVM filter applied on
de(w)j < de”. — Clitryi (13) a corrupted with mixed impulsivep = 0.2) and Gaussian
i=1 i=1 (s = 10) noise. The local variances of the VM and FVM
filtered images are shown in Figures 4b and c respectively.
The above equation shows that, the vector that correspond§igure 4d shows the differences between the local variances
to the classical Vector Median is the most probable candi- of the FVM filtered images shown in Figure 4b and c. The
date to be the Fuzzy Vector Median sir€g = 0. Itis also variances are subtracted and the red channel corresponds to
more probab|e to be substituted by its ordered neighbours,the positive differences, where the FVM local variances are

and the probability is reduced as the classical distance of thegreater. The green channel corresponds to the negative dif-
center<” increases. ferences, where the VM local variances are greater. The

blue channel corresponds to the local variances of the orig-
inal lenna (edges). It is shown, that there are many cases
4. APPLICATIONS where the FVM local variances are greater on the edges
(pink pixels) something that is desirable and means that the
Vector median filters are usually used to remove impulsesFVM filter preserves the edges better than VM filter does. It
from noisy color images. In the following, we shall present is also shown that the VM local variances are greater (green



Table 1: The SNR of the FVM and VM filters applied on the
imagelenng corrupted with different values of impulsive
(percentage of corrupted pixels p=0.1, 0.2) and Gaussian

noise (noise standard deviation s=0,10,20). ;

Impulsive | Gaussian|| FVM VM
noise (p) | noise (s)|| (SNR) | (SNR)
0.1 0 0.1850| 0.1853
0.1 10 0.1901| 0.1910
0.1 20 0.1997| 0.2004
0.2 0 0.1067| 0.1070 €) (b)
0.2 10 0.1125] 0.1134
0.2 20 0.1283]| 0.1293

Table 2: The average of the local variangeshen the FVM

and VM filters are applied on the imadenng corrupted
with different values of impulsive (percentage of corrupted
pixels p=0.1, 0.2) and Gaussian noise (noise standard devi-
ation s=0,10,20).

Impulsive | Gaussian|| FVM VM

noise (p) | noise (s) || (&) (@) (c) (d)
0.1 0 6.603 | 6.604
0.1 10 8.590 | 8.609 Figure 4: (a) The FVM filtered imaglennacorrupted by
0.1 20 11.412| 11.410 . . 7 . O _
02 0 7308 | 7 417 impulsive (p=0.2) and Gaussian (s=10) noise. (b) The local
0'2 10 9.564 9.600 variances of the VM filtered image. (c) The local variances

. - - of the FVM filtered image. (d) The differences between the

0.2 20 12.751| 12.757

local variances of the FVM and VM filtered images (FVM-
VM: red channel, VM-FVM: green channel, the local vari-
ances of the original lenna: blue channel).

pixels) in most cases in homogeneous regions something
that is undesirable and is reduced by using FVM filter (red

pixels). nal and Image Processingp. 297-300, Neos Marmaras,

Greece, June 1995.
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