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Abstract - In this paper the properties of
the joint distribution function of the
outputs of stack filters with common
arguments are examined. The special
characteristics of these functions are
discussed. Different approaches for
characterising them are considered.
Empirical tests are performed and
reported. Different ways of extracting
useful correlation information are
compared.

INTRODUCTION

Stack filters, including median filters have
been applied to a variety of applications, c.f.
[3], since median filtering was introduced by
Tukey in 1974 [6]. These filters have some
useful properties, not shared by strictly linear
systems, e.g. robustness in the presence of
heavy tailed noise. They are also well suited
for image processing, where their non-linear
effects are useful. The standard median filter,
for example, removes impulsive noise and
preserves sharp edges. Many median type
filters, e.g. weighted median and order
statistic filters, can be thought of as special
cases of stack filters [3] and thus expressed
as combinations of MIN- and MAX-
operations. Threshold decomposition and the
stacking property [2] provide a useful link
between stack filters and positive Boolean
functions. Statistical properties of median
and stack filters have been studied in [1], [2]
and [3].

In this paper we concentrate on examining
the joint distribution of two stack filters. A
formula for computing the cumulative joint
distribution function has been derived [4],
assuming independent input distributions.
The output distribution function can be
expressed as piecewise defined multinomial
of the input distribution, if iid. input is
assumed. For two stack filters this means
that the output distribution is defined by two
different multinomials, and that there is
discontinuity of derivative on the diagonal.

This discontinuity has an interesting effect
when an expression for the corresponding
joint density is derived - the density function
will have to include the Dirac delta function.
An infinitely small area on the plane, a mere
line, possesses a finite portion of the
probability mass.

In examining median filtered sequences the
joint distribution of two subsequent samples,
(for example), behaves in the above
described way - the same input sample can
be chosen to output several times. We will
investigate the properties of the
autocorrelation function of such sequences,
and discuss the alternative ways of defining
it. One such alternative is that described by
Maragos [5]. We will also propose a new
way of defining a useful measure of
correlation, a way which is especially suited
to signal processing problems involving
median type filters. We will define this
correlation measure so that it will estimate
the amount of dependence caused by median
filtering, independent of the input
distribution.

We will report the results of simulations
comparing these methods and the traditional
cross correlation.

JOINT DENSITY FUNCTIONS OF STACK
FILTERS

The cumulative joint distribution function of
the output of two stack filters can be
expressed as piecewise defined multinomial
of the input distribution, if iid. input is
assumed [4]. This means that the output
distribution is defined by two different
multinomials. The two functions are equal
on the diagonal, this can be seen by setting
s=t in (from [4])
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The derivatives of the two multinomials,
however, are not equal on the diagonal.

 This discontinuity has an interesting effect
when an expression for the corresponding
joint density is derived - the density function
will have to include the Dirac delta function.
An infinitely small area on the plane, a line,
possesses a finite portion of the probability
mass (Figure 1).
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Figure 1. Joint distribution of samples one step
apart in a 4000 point sequence, formed by
filtering a (0,1)-uniformly distributed input signal
with the 3-point median filter. 1332 points are
lying on the diagonal line.

Let us now proceed to derive the joint density
function of  two stack filters. For simplicity,
let input arguments be (0,1)-uniformly
distributed iid. random variables. We can
now restrict our attention to a unit square in
(s,t)-plane. The results can be generalised for
any continuous distribution. Let
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which can be expressed with the aid of
Heaviside step function
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where D denotes the Dirac delta function
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and
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Differentiating (5) with respect to t we get
the joint density function,

Ψ Ψ

Ψ Ψ

Ψ Ψ

st st

st st

s s

s t s t

H s t s t s t

D s t s t s t

( , ) ( , )

( )( ( , ) ( , ))

( )( ( , ) ( , )).

=

+ − −

− − −

1

2 1

2 1

    (10)

The density function (10) can be used, for
example, to calculate the probability P of the
event that two different stack filters, sharing
common arguments, produce equal outputs.
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This can be done either by integrating over
the density function, disregarding the
diagonal, that is
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or by setting r=t=s and thus integrating over
the diagonal part,

P r r r r drs s= − −∫ ( ( , ) ( , ))Ψ Ψ2 1
0

1

       (12)

Example 1. Let the (0,1)-uniformly
distributed iid. input signal be filtered with
the three point median filter, and let us
investigate the joint distribution two
consecutive samples in the output sequence.
By [4], their joint cumulative distribution
function will be
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Differentiating with respect to s, and
applying (5) we get
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and differentiating with respect to t we get
the density function
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Applying (11) we get 1-P=2/3, and applying
(12) P=1/3.

The finite probability mass on the diagonal
line can be interpreted as follows: the two
stack filters have a certain probability of
producing exactly equal outputs - even for a
continuous input distribution. This would not
happen in the case of two different linear
filters. The fact that stack filters always

produce one of the input samples to the
output, accounts for this phenomenon.

CORRELATION MEASURES

We will consider three correlation measures,
and apply them to template matching,
namely linear cross correlation (L2-
correlation), morphological correlation (L1-
correlation) [5], and a measure based on
exact equality of samples (EQ-correlation).

Let f(n) be an arbitrary signal and g(n) a
pattern to searched from f. To find the best
match, an error criterion such as mean
squared error (MSE) can be minimised

E k f n k g n
n W

2
2( ) ( ( ) ( )) .= + −

∈
∑               (16)

Since (a-b)2=a2+b2-2ab, minimising (16)
equals maximising

γ fg
n W
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yielding the classical (sum of products)
linear correlation.

Using the mean absolute error (MAE)
criterion

E k f n k g n
n W

1( ) ( ) ( ) ,= + −
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and noticing that |a-b|=a+b-2min(a,b), we
can define morphological correlation [5]

µ fg
n W
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Correlation based on measuring the number
of exactly equal samples, the so called EQ-
correlation can be defined by

σ fg
n W

k f n k g n( ) ( ) ( )),= + =
∈
∑ (              (20)

where the result of sample-wise comparison
is taken to be real 0 or 1.

It has been shown in [5] that morphological
correlation yields sharper peaks than linear
correlation. EQ-correlation, on the other
hand, is severely handicapped in many
situations by the requirement of exact
matching. Still, it may be useful in situations
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where sample amplitudes are restricted to a
small number of discrete values (image
processing). Another useful application may
be examination of sequences filtered by stack
filters. EQ-correlation is also totally
independent of the shape of the continuous
input distribution.

Let us now consider statistical
characterisation of  the density function (10),
using the above described correlation
measures. Let
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( , ) ( ) ( , ) ( ) ( , ),
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 (21)

where P,Q and R are multinomials. Linear
cross correlation can now be calculated as
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and, denoting
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 morphological correlation as
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EQ-correlation is defined by (12), measuring
the probability mass lying on the diagonal.

We can now continue with example 1, and
calculate the autocorrelation function of the
3-point median filter analytically from the
density function (15), recalling the output
distribution functions from [4]. The results
are illustrated in table 1.

              Correlation of samples k steps apart

k =
−
−
−

0 1 2 3

1 0

3
10

5
18

83
315

1
4

1
2

13
30

2
5

13
35

1
3

2
15

L2 corr.

L1 corr.

EQ corr.
Table 1. Correlation of (0,1)-uniformly distributed
iid. sequence, filtered with 3-point median filter.

EXPERIMENTS

The results presented in table 1. Are verified
empirically. Autocorrelation functions are
calculated by filtering a 2000-point sequence
of iid. (0,1)-uniformly distributed input
signal with the 3-point median filter. Then a
portion of the output signal, (samples 800-
1199), are matched against the filtered
signal, applying L2-, L1- and EQ-correlation
criteria. a-figures show the whole
autocorrelation function, and b-figures a
zoomed-in version.
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