
ALPHA-TRIMMED MEAN RADIAL BASIS FUNCTIONS AND THEIR

APPLICATION IN OBJECT MODELING

Adrian G. Bor�s Ioannis Pitas

Department of Informatics

University of Thessaloniki

Thessaloniki 54006, Greece

ABSTRACT

In this paper we use Radial Basis Function (RBF) net-
works for object modeling in images. An object is com-
posed from a set of overlapping ellipsoids and has as-
signed an output unit in the RBF network. Each basis
function can be geometrically represented by an ellip-
soid. We introduce a new robust statistics based algo-
rithm for training radial basis function networks. This
algorithm relies on �-trimmedmean statistics. The use
of the proposed algorithm in estimating ellipse param-
eters is analyzed.

1. INTRODUCTION

Radial basis function neural network consists of a two
layer feed-forward structure employed for functional
approximation and classi�cation proposes. When used
in pattern classi�cation an RBF network successfully
approximates the Bayesian classi�er [1, 2]. In this case,
the underlying probability functions are decomposed in
a sum of kernel functions with localized support. The
functions, implemented by the hidden units, are usually
chosen as Gaussian. The intersection of an Gaussian
with an hyperplane is geometrically an ellipsoid. Ob-
jects in images can be seen as composed from a set of
overlapping elliptic discs in 2-D [3], or ellipsoids in 3-D.

A classical RBF network training algorithm relies
on the learning vector quantization [1]. This learning
algorithm represents the adaptive version of the mo-
ments approach, used for estimating the ellipse param-
eters [4]. However, the moments method is likely to
provide biased estimates in the case when the ellipses
are overlapping or when they are embedded in noise.
In [2, 5] marginal median and median of the absolute
deviation [6] have been proposed as robust estimators
for �nding the RBF's hidden unit parameters. In this
paper we analyze the �-trimmedmean RBF algorithm.
The previous two algorithms are particular cases of the
new approach. �-trimmed mean has been extensively
used in image �ltering [6, 7]. After ranking the data

samples assigned to a basis function, a certain num-
ber of them is eliminated from estimation. The num-
ber of data samples to be eliminated depends on the
distribution [8, 9]. We analyze the estimation of the
ellipse parameters when using �-trimmed mean statis-
tics. The proposed algorithm is applied for modeling
arti�cial generated patterns and for segmenting a set
of microscope images.

2. THE RADIAL BASIS FUNCTION

MODEL

The RBF network has been employed in many appli-
cations including curve modeling [1] or moving object
recognition [5]. The output unit models a complex
function composed of a mixture of overlapping ker-
nels. Each kernel implements an unnormalized Gaus-
sian function :

�j(X) = exp
��(X � �j)

0 ��1
j (X� �̂j)

�
(1)

whereX represents the input feature vector, and �j;�j ,
the Gaussian center vector and covariance matrix. The
output represents a weighted sum of hidden units scaled
to the interval (0; 1) by the sigmoidal function :

Yk(X) =
1

1 + exp
h
�PL

j=1�kj�j(X)
i (2)

where �kj are output weights, L is the number of hid-
den units and k = 1; : : : ;M are the output units.

The parameters of the RBF network are found by
training. A classical algorithm for training RBF net-
works consists of assigning a group of data samples to a
basis function according to the smallest Euclidean dis-
tance between every data sample and the basis function
center :

kX� �kk = L
max
j=1

kX� �jk: (3)

The initial values of the center vectors are taken ran-
domly in the input range. From the data distribu-
tion, assigned to a basis function, the parameters of



(1) are calculated. In [1] a variant of the learning vec-
tor quantization, which corresponds to classical statis-
tics assumptions, has been used. Marginal median and
median of absolute deviation have been considered for
calculating the hidden unit parameters in [2, 5]. This
algorithm has been called median RBF (MRBF).

3. THE ALPHA-TRIMMED MEAN RBF

TRAINING ALGORITHM

We propose a new robust statistics based training al-
gorithm. Let us order the data samples assigned to a
speci�c basis center when using (3) and denote them
according to their rank asX(k) for k = 0; : : : ; Nk, where
Nk is the number of data samples assigned to the kth
basis function. A general description of many robust
statistics algorithms consists of assigning a weight to
every data sample with respect to its rank and calcu-
lating the location estimate as :

�̂k =

NkX
i=0

Wi X(i)

NkX
i=0

Wi

(4)

where Wi is the weight assigned to the data sample
with respect to its rank. If Wi = 1 for i = 0; : : : ; Nk

then the location is computed by averaging. If Wi = 0
for i = 0; : : : ; Nk

2
� 1, i = Nk

2
+ 1; : : : ; Nk and Wi = 1

for i = Nk

2
we obtain the marginal median estima-

tor. In other robust statistics algorithms, Wi is re-
placed by a function which decreases with respect to
the distance of the ordered sample X(i) from the cen-
tral data sample X

(
N
k

2
)
. In this study we propose the

�-trimmed mean algorithm [6] which assigns Wi = 1
for i = �Nk; : : : ; Nk � �Nk in (4) and Wi = 0 for the
rest of data sample, where � is the percentage of data
samples to be eliminated from the estimation. This al-
gorithm is called �-trimmed mean RBF and estimates
the center of the basis function as :

�̂k =

Nk��NkX
i=�Nk

X(i)

Nk � 2�Nk

(5)

The �-trimmed mean algorithm has been shown as a
good choice for the long and medium tail data distri-
butions. This algorithm has been extensively used for
image �ltering [6, 7].

The parameter � is chosen according to the data
distribution. The following measure is used for esti-

mating the tail of the data distribution [8, 9] :

Q =
U [0:5]� L[0:5]

U [0:05]� L[0:05]
(6)

where U [�]; L[�] represent the average of the upper
and respectively lower � percentage of data samples.
The number of data samples to be trimmed away relies
directly on the value of Q :

�̂ =
1�Q

2
: (7)

When the distribution is long tailed, the amount of
data samples to be trimmed is large, and when the
distribution tail is short, the amount of data samples
to be trimmed is small.

For the second order statistics parameters, we or-
der the data samples according to their Mahalanobis
distance from the estimate �̂k :

M(0) =
L

min
j=0

[(X� �̂j)
0 �̂�1

j (X � �̂j)] (8)

After ordering the data samples M(0) < : : : < M(Nk),
the estimate of the covariance matrix is chosen as :

�̂j =

Nk�2�M NkX
i=0

(X(i);M � �̂j)
0 (X(i);M � �̂j)

Nk � 2�M Nk

(9)

where X(i);M denotes the ith ordered data sample ac-
cording to the Mahalanobis distance (8). The covari-
ance matrix in (8) is initially estimated based on classi-
cal second order statistics, without trimming any data
sample away from the given distribution, i.e. by con-
sidering �M = 0 in (9). The number of data samples
to be trimmed is calculated using :

�̂M = 1� U [0:5]

U [0:05]
(10)

Both formulas used in (5,9) can be calculated from
data histograms. For the output parameters we employ
the backpropagation algorithm as in [2]. The mixture
of Gaussian functions can approximate complex func-
tions.

If we drop the exp and the sign under the expo-
nential in the expression (1) we obtain the equation of
an ellipsoid. We can observe that for X 2 IR2, if we
intersect the Gaussian function with a plane we obtain
an ellipse. With ellipses we can model complex 2-D ob-
jects [3]. The mean of the Gaussian function from (1)
corresponds to the center, the variance to the width
and the cross-correlation to the orientation of the el-
lipse.



4. ELLIPSE PARAMETERS ESTIMATION

Let us consider the equation of an ellipse in the analitic
form :

(X� �)0��1(X � �) = 1 (11)

where � denotes the center vector of the ellipse and��1

its width and orientation. We denote the components
of this matrix as :

��1 =

�
a c

c b

�
(12)

The method based on moments for estimating the pa-
rameters of an ellipse is described in [4]. We consider
an elliptic disc as a uniform distributed statistics inside
of an elliptic shape. We can calculate the ellipsis center
based on the �rst order moments :

E[�̂x] =

Z xsup

xinf

Z ysup

yinf

x dydxZ xsup

xinf

Z ysup

yinf

dydx

(13)

where xinf ; xsup; yinf ; ysup denote the geometrical lim-
its of the ellipse and the denominator denotes the area
left after truncation.

In order to evaluate the limits of integration we cal-
culate the tangents to the ellipse, which are parallel to
the x axis [4] :

xt = �x +
��1vp
v0��1v

(14)

where v is the vector normal to the ellipse and parallel
with the x axis, and �x is the x component of the cen-
ter vector. After choosing two vectors v1 = (1 0)0 and
v2 = (�1 0)0 we derive the limits on the x axis. In
the case of trimming, let us denote with x� the interval
from the ellipse eliminated by �-trimming. The inte-
gration limits corresponding to the truncated ellipse
are :

xsup; xinf = �x �
 
x� �

r
b

ab� c2

!
(15)

The integration limits on the y axis are derived from
the equation (11) :

ysup; yinf = �y �
c(x� �x)�

p
b� (ab� c2)(x� �x)2

b
(16)

The truncated ellipse area can be expressed, after chang-
ing the variable, and considering (15,16) :Z xsup

xinf

Z ysup

yinf

dydx =

2p
ab� c2

Z 1�x�
p
(ab�c2)=b

�1+x�
p
(ab�c2)=b

p
1� z2dz (17)

For the numerator from (13), similarly with the
above derivation, we obtain :Z xsup

xinf

Z ysup

yinf

x dydx =

2�xp
ab� c2

Z 1�x�
p
(ab�c2)=b

�1+x�
p
(ab�c2)=b

p
1� z2dz +

2
p
b

ab� c2

Z 1�x�
p
(ab�c2)=b

�1+x�
p
(ab�c2)=b

z
p
1� z2dz (18)

The second integral in (18) is zero and from (13,17,18)
the result of the estimation is :

E[�̂x] = �x: (19)

This result proves that the estimation of the ellipse
center by trimming is unbiased in the case of perfect
ellipses, 8 � 2 [0; 1

2
].

We evaluate the �-trimmedmean algorithmfor esti-
mating the parameters of the ellipse covariance matrix
(width and orientation). The equation of the ellipse,
resulted after trimming �M of the data samples and
after ranking them according to the Mahalanobis dis-
tance with respect to the ellipse center (8), is :

(X � �)0��1(X � �) = 1� �M (20)

The estimation of the ellipse width is given by normal-
ized second order moments [4] :

E[�2x] =

Z xM;sup

xM;inf

Z yM;sup

yM;inf

(x� �x)
2 dydxZ xM;sup

xM;inf

Z yM;sup

yM;inf

dydx

(21)

where xM;inf ; xM;sup; yM;inf ; yM;sup are the extreme points
of the ellipse after trimming.

Following similar derivations as for (15) we obtain
the integration limits on x :

xM;sup; xM;inf = �x �
p
b(1� �M )

ab� c2
(22)

Similarly with (16) we derive the integration limits on
y. We obtain the area of the ellipse in this case as :Z xM;sup

xM;inf

Z yM;sup

yM;inf

dydx =
(1 � �M)�p

ab� c2
(23)

For the numerator in expression (21) we obtain :Z xM;sup

xM;inf

Z yM;sup

yM;inf

(x� �x)
2 dydx =

(1� �M)2bp
(ab � c2)3

Z 1

�1

z2
p
1� z2dz =

(1� �M)2�b

4
p
(ab� c2)3

(24)



From (23) and (24) we derive the estimate for the
variance :

E[�̂2x] =
(1� �M )b

4(ab� c2)
(25)

We get a similar expression for the cross-correlation. In
the expression (25), if we consider �M = 0 we obtain
the same result as in [4] for estimating the normalized
second order moment of an ellipse. In order to correct
this bias, when estimating ellipsis covariance matrix we
use the following expression, instead of (9) :

�̂j =

Nk�2�M NkX
i=0

(X(i);M � �̂j)
0 (X(i);M � �̂j)

(1� �M )(Nk � 2�M Nk)
: (26)

5. SIMULATION RESULTS

We have tested the �-trimmedmean RBF algorithmon
arti�cial generated patterns. We consider three over-
lapping discs in a 512 � 512 image, without noise and
with additive uniform distributed noise as shown in
Figure 1 (a). We apply the classical learning algorithm
for RBF, MRBF [2] and �-trimmed mean RBF algo-
rithm. The results are displayed in Figures 1 (b), (c)
and (d), respectively. We consider the coordinates of
the white pixels as inputs of the network. The amount
of uniform distributed noise accounts for 4 % of the to-
tal number of pixels. The noise e�ect is considered as
switching the value of the pattern and background. As
it can be observed in Figure 1, the initial pattern is de-
teriorated. The comparison measures are the average
of the Euclidean distances between the centers of the
discs and those of the estimated model, and the total
number of erroneous pixels in the reconstructed model
with respect to the noise-free image. From Table 1 we
can observe that �-trimmed mean RBF algorithm pro-
vides better results than the other two algorithms in
modeling the object. As it can be observed in Figure
1 the pattern corrupted by noise is better modeled by
MRBF and �-trimmed mean RBF when compared to
the classical statistics based approach.

We have applied the proposed algorithm on a stack
of 3-D microscope images representing the inner struc-
ture of a tooth. In Figures 2 (a), (d) two frames of
this stack of images are shown. The graylevel and the
pixel coordinates have been used as inputs in the net-
work. The graylevel accounts for the object segmenta-
tion while the coordinates account for the object local-
ization. Both, the blood vessels and the background are
modeled by RBF or �-trimmed mean RBF functions.
The result of the segmentation using the RBF, based
on moving average and classical variance is shown in

Figures 2 (b), (e). In Figures 2 (c), (f) the result pro-
vided by �-trimmed mean RBF algorithm is displayed.
The blood vessels are quite well segmented in the re-
sults provided by the �-trimmed mean RBF algorithm.

6. CONCLUSION

In this study we introduce a new algorithm for estimat-
ing the parameters of hidden units in RBF networks.
The proposed algorithm employs the �-trimmed mean
statistics for calculating the hidden unit parameters.
The number of data samples trimmed away in the pro-
posed algorithm depends on the distribution. Ellipse
parameter estimation using the �-trimmed mean RBF
algorithm is analyzed. The proposed algorithm is ap-
plied in image modeling and segmentation.
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Noise-free Model Noisy Model (4 % noise)
Algorithm Center Location Modeling Center Location Modeling

Estimation Error (%) Estimation Error (%)
RBF 134.23 5.23 620.47 28.11
MRBF 162.40 13.72 339.17 16.22

�-trimmed
RBF 129.49 4.84 356.32 15.18
Table 1. Numerical comparison when modeling an arti�cial pattern.

(a) Arti�cial generated (b) Modeling provided by (c) Modeling provided by (d) Modeling provided by
image corrupted by noise. classical RBF algorithm MRBF �-trimmed mean RBF.

Figure 1. Comparative algorithm performance in modeling an arti�cial pattern.

(a) (b) (c)

(d) (e) (f)
Figure 2. Segmentation of blood vessels in a set of microscope images representing inner structure of a
tooth : (a), (d) original microscope images ; (b), (e) segmentation provided by classical RBF; (c), (f) seg-
mentation provided by �-trimmed mean algorithm.


