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ABSTRACT

Vector Median (VM) �lters are known to globally perform
better than scalar independent median �lters around edges.
In this work, we examine the �ltering of vector edges cor-
rupted by scalar impulsive noise. We show that VM per-
formance is highly dependent on the relative magnitude of
the impulses, the noisy component and the noise-free com-
ponents of the edges. This characteristic gives some indica-
tions for adequately choosing the norm (L1/L2) of the VM
�lter and the standard (RGB/YUV) of data representation.

1. INTRODUCTION

Scalar median �ltering is known to produce artifacts when
applied independently to all channels of a multi-component
(vector) signal. Such artifacts can be observed around edges,
when �ltering a color image embedded in an impulsive noise.
In order to take advantage of the particularity of multi-
component signals, vector median (VM) �lters have been
introduced [1]. Simulations have shown that VM �ltering
can partly avoid these artifacts of the scalar independent
median, also called \marginal median" (mm) �lter [2], but
a theoretical proof has not yet been given. Some statisti-
cal results are presented in [1] and [3], but the considered
input signal is always a constant vector corrupted by addi-
tive noise, and in this case, mm �lter is often preferable to
VM �lter. Since experiments indicate that, on noisy edges,
VM can work better than mm �lters, it is of great interest
to theoretically compare mm and VM �lter outputs, when
the �lter's input is a noisy edge. Such an approach was
also used in [4]. Median type �ltering being well suited for
\heavy-tailed" noise, we also consider edges corrupted by
impulsive noise.
After some further precisions about the considered input
signal, in Section 2 we express the output of the VM �lter,
de�ned with both the L1 norm (leading to the VML1 �l-
ter) and the L2 norm (VML2 �lter), as a function of the
impulse magnitude, with respect to that of the edge com-
ponents. These results will be illustrated in Section 3 using
a synthetic pattern of vector edges. A comparison of mm
and VM �lters is also presented in Section 4 with color nat-
ural images, both in the RGB (Red, Green, Blue) and YUV
(Luminance and Chrominance) standards.

2. THEORETICAL ANALYSIS

2.1. Assumptions of our model and simpli�cations

�We consider a vector signal consisting of a vector edge
a�ected by a scalar impulse. Vector edge means that the
components of the edge are located at the same spatial po-
sition for each component; however, the magnitude of the
edge can be di�erent on each vector component.

� This model leads to 4 possible con�gurations for the
\noisy component", that is the signal component containing
the impulse, as depicted in Fig. 1.

(d)(c)

(a) (b)

Figure 1: 4 con�gurations for the impulse and the edge.

It can be seen that the con�guration (a) is analogous
to (c), as well as (b) is analogous to (d). Hence, we can
con�ne our analysis to the (a) and (b) con�gurations.

� Let W = 2N + 1 be the window's size. If the window
is not centered on the edge, as for the example in Fig. 2
(using one-dimensional data and W=5), there are at least
N + 2 samples equal to a same value we denote X, if no
impulse is present, and there are at least N + 1 samples
equal to X in the presence of one impulse, no matter where
this impulse is located.

So, in the case of an \uncentered window", the output of
the �lters (mm, VML1 and VML2) is always equal to this
value X. The only window position we have to consider
in the following also corresponds to the \central position"
(window centered on the edge).

� The edge can be either ascending or descending on the
\impulse-free" components; this does not a�ect the analysis
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Figure 2: Example of a window being uncentered on the
edge.

of the mm, VML1 and VML2 �lter output.

In conclusion, without loss of generality, it is su�cient
to analyze the output of the mm, VML1 and VML2 �lters
to a vector edge, ascendant on its noisy component, where
the scalar impulse (which can be either positive or nega-
tive) a�ects a sample of the low level, and where the sliding
window is centered on the edge, as it is summarized in Fig.
3. The only constrainst of our model is that there is no
more than one impulse in the window, which is a realistic
assumption when the probability of impulse occurence is
not too high.
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Figure 3: Con�guration to be studied (magnitude of each
edge component and of the impulse are variable).

2.2. Principle of the analysis

According to the simpli�cations mentioned in section x2.1,
the samples included in the window can be split in 3 classes
: there are N vector samples corresponding to the low edge
level, denoted (1), N vector samples of the high edge level,
denoted (2), and one vector sample corrupted by a scalar
impulse, denoted (i).

The vector median �lter is de�ned as [1]

yVMLp
= arg min

xl2W

2N+1X
j=1

kxl � xjkLp
; (1)

where Lp is the considered norm (L1 or L2).
In our case, arg minxl2W (:) is one of the 3 vectors (1), (2)
or (i). The VM �lter can be rewritten as:

yVMLp
= arg min

(1);(2);(i)
(d1; d2; di); (2)

where8>>>><
>>>>:

d1 =
P2N+1

j=1
k(1)� xjkLp

= Nd12 + d1i

d2 =
P2N+1

j=1
k(2)� xjkLp

= Nd12 + d2i

di =
P2N+1

j=1
k(i)� xjkLp

= N(d1i + d2i)

(3)

with: d12 = k(2) � (1)kLp
, d1i = k(1) � (i)kLp

and d2i =
k(2)� (i)kLp

.

Using this notation, the VM �lter's output can be ex-
pressed as

yVMLp
=

8>>>>>>>>><
>>>>>>>>>:

(1) if

�
d1 < d2
d1 < di

(2) if

�
d2 < d1
d2 < di

(i) if

�
di < d1
di < d2

(4)

When d1, d2 or di are equal, an additional rule is re-
quired to determine the VM �lter's output. This particular
case is not of interest for our analysis and will be later ig-
nored.

2.3. The VML1 �ltering

Theoretical analysis of the VM �lter, using L1 metric, can
be split in 3 cases, according to the magnitude of the im-
pulse. In the following, � denotes the magnitude of the
noisy edge component.

2.3.1. Negative impulse

In Fig. 4, we represent the 2N+1 vectors in a two-dimensional
space (X,Y), where the negative impulse a�ects the compo-
nent Y of a vector (1).
Using the L1 metric, d2i = d12 + d1i, which involves

d2i > d1i. Combining this with equation (3), we get

� d2 > d1;

� di = Nd12 + 2Nd1i > d1:

So, according to eq. (4), the output of the VML1 �lter
corresponds to vector (1).

2.3.2. Positive impulse whose level is lower than �

This con�guration is illustrated in Fig. 5 for two-dimensional
data. In this case, d12 = d1i + d2i. Substituting in eq. (3),
we get

� d1 = N(d1i + d2i) + d1i > di;

� d2 = N(d1i + d2i) + d2i > di:

Hence, the output of the VML1 �lter corresponds to the
impulse (i).
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Figure 4: Input vectors in the 2-dimensional space (X,Y),
with a negative impulse.
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Figure 5: Input vectors, with a positive impulse whose mag-
nitude is lower than the noisy edge component.

2.3.3. Positive impulse with a level greater than �

The corresponding case is reported in Fig. 6, for two-
dimensional data. We then get d1i = � + � and d2i =
d12 ��+ �, leading to(

d1 = Nd12 +�+ �;

d2 = (N + 1)d12 ��+ �;

di = Nd12 + 2N�:

Thus,

� d1 < d2 , � <
d12
2 ;

� d1 < di , � > �
2N�1 ;

� d2 < di , � >
d12��
2N�1 :

The output of the VML1 �lter is therefore given by8>>><
>>>:

if � < d12
2

: yVML1 =

�
(i) if � < �

2N�1

(1) otherwise
;

if � > d12
2

: yVML1 =

�
(i) if � < d12��

2N�1

(2) otherwise
:

(noise-free
component)

Y2

Yi

Y

Y1

(noisy component)

XX

X

1

i

X2

(1)

(i)
(2)

∆

δ

Figure 6: Input vectors, with a positive impulse whose mag-
nitude is greater than the edge noisy component.

2.4. The VML2 �ltering

According to our model of signal and noise, VML2 �ltering
is based on eq. (3) and (4), where the distances are com-
puted using L2 metric. The analysis can be again split in 3
cases.
Let us de�ne 
 as the magnitude (L2) of the edge without
its noisy component, so as �2 + 
2 = d212.

2.4.1. Negative impulse

We refer to Fig. 4. Using L2 metric, we get

� d2i =
p

2 + (� + �)2 > �, so d2i > d1i. According to

eq. (3), we obtain d2 > d1.

� di = Nd1i +N
p

2 + (� + �)2 > Nd12 + d1i, which in-

volves di > d1.

Thus, according to eq. (4), the output of the VML2 �lter
is the vector (1).

2.4.2. Positive impulse, with 0 < � < �

We, now, refer to Fig. 5. The use of L2 metric leads to�
d1i = �;

d2i =
p

2 + (� � �)2:

Substituting into eq. (3),

� di < d1 , � < 2
�� kd12

1� k2
; with k =

N � 1

N

� di < d2 , � < �1 (5)

where �1 =
d12�k

2��k
p
2d2

12
�2�d12�k2
2

1�k2
(proof of (5) is

given in the appendix).

� d2 < d1 , � >
d2
12

2�

� if 
 > �, which is equivalent to d12 >
p
2�, then

d2
12

2� > �; the inequality � >
d2
12

2� becomes impossible (con-
trary to the hypothesis of x2.4.2). Thus, d1 < d2, and we
get



yVML2 =

�
(i) if � < 2��kd12

1�k2

(1) otherwise
:

� case where 
 < � : the output of the VML2 is
given by

yVML2 =

8>>>><
>>>>:

(i) if � < 2��kd12
1�k2

(1) if 2��kd12
1�k2

< � <
d
2

12

2�

(2) if � >
d
2

12

2�

:

2.4.3. Positive impulse, with a level greater than �

A two-dimensional representation is given in Fig. 6. We
have �

d1i = �+ �

d2i =
p

2 + �2

:

� It can be shown that di is always greater than d1. The
�lter's output is then (1) or (2).

� d1 < d2 , � < 
2��2

2�
. Thus,

� if 
 < �, d2 < d1, that is yVML2 = (2)

� if 
 > �, yVML2 =

�
(1) if � < 
2��2

2�

(2) otherwise
.

2.5. Schematic synthesis of theoretical analysis

In order to summarize the di�erent con�gurations we en-
countered in the analysis, outputs of the VML1 and VML2
�lters are given in Fig. 7; output of the marginal median
is also presented as a matter of comparison. This clearly
shows that the output of the �lters is highly dependent
upon the magnitude of the impulse, with regard to that of
the noisy edge component. The di�erent con�gurations we
studied correspond to di�erent relative contributions of the
noisy and noise-free components in the global norm of the
edge. This point has a practical interest which is discussed
in x4. We use the following notations:
r1+ : � >

d12
2 ; r2+ : � >

d12p
2
. Conditions \rl-" are dual

with \rl+" (l = 1; 2), i.e. the symbol < replaces >.
Thresholds are de�ned as t1 = �+ �

2N�1 , t2 = �+ d12��
2N�1 ,

t3 = �+ 
2��2

2�
, t4 =

d2
12

2�
, t5 = 2��kd12

1�k2
.

3. ILLUSTRATION USING SYNTHETIC

IMAGES

In order to illustrate the results of the precedent theoreti-
cal analysis, in Fig. 8 we give comparative outputs of mm,
VML1 and VML2 �ltering, using a 5 pixels horizontal mask.
Input signal is an R-G-B test pattern of vertical contours,
which are embedded in a channel-independent impulsive
noise. The magnitude of these \salt-and-pepper" impulses
is increasing when going from the left to the right of the
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Figure 7: Filter outputs for the marginal and vector median
(VML1, VML2) �lters for an edge, with low level (1) and
high level (2), corrupted by an impulse i. (The notation is
completely de�ned in the text.)

test image.
For this particular image, the magnitude of the edges is
equal for each signal component, and constant over the im-
age, so that

� d12 = 3�, using L1 norm, leading to the case \r1-" in
Fig. 7 (i.e. � < d12

2
)

� d12 =
p
3�, using L2 norm, which involves � < d12p

2
,

thus referring to the case \r2-".
These two cases correspond to the grey part in Fig. 7.

Both theoretical and simulation results clearly show the
global superiority of VM with regard to mm �ltering in
this case of edges corrupted by scalar independent impulses.
Secondly, the \surprizing" di�erent behaviors of VML1 and
VML2 �lters emphasize the fact that an a priori knowledge
of impulse levels could drive the choice of the norm.

4. FILTERING OF COLOR IMAGES

Simulations have also been driven using natural color im-
ages. In Fig. 9, we report the results of mm and VM �lter-
ing, where the R-G-B input image \boat" is corrupted by
channel-independent impulsive noise. This �gure is a clear
illustration of the global superiority of VM over mm �lter-
ing, for R-G-B images corrupted with this kind of degrada-
tion, especially when looking at the edges (ropes and hull).
The same image, now in the Y-U-V format, is presented in
Fig. 10; the 3 components are a�ected by scalar indepen-
dent impulses. In this case, the di�erence between marginal
and vector median �ltering is weak; this is because artifacts
on the edges caused by mm �ltering are less sensitive in the
Y-U-V standard; another reason is relative to VM �lter:
edge magnitude on the Y component is often consequently
greater than those on U and V channels; so, impulses on Y
often correspond to the cases \r1+" and \r2+" of Fig. 7,



which more often produce erroneous output values. Thus,
the superiority of VM over mm �ltering is especially e�ec-
tive in R-G-B standard.

5. CONCLUSIONS

In this paper, we analyzed the response of the vector me-
dian �lter (de�ned with both L1 and L2 norm) to vector
edges corrupted by channel-independent impulsive noise. In
particular, we compared vector median with marginal me-
dian �ltering, which is known to produce artifacts with this
type of input signal. Our theoretical analysis con�rms that
the vector median globally outperforms the marginal me-
dian �lter with such input signals. However, this work em-
phasizes that the �ltering performance is highly dependent
on input data and on the choice of the norm used for the
VM operator. Especially, the relative magnitude between
impulses and edges, as well as between edge components,
considerably in
uence the �lter's output.
Consequently, a priori knowledge of impulse level, with re-
gard to the input signal, should be a determinant informa-
tion in the design of the �lter (choice of the norm). We also
showed that VM �ltering works better when edge compo-
nents have comparable magnitudes; hence, VM is expected
to perform better in R-G-B than in Y-U-V standard, where
edge magnitude on the Y component is often signi�cantly
higher than in other channels. Theoretical results have also
been illustrated using synthetic and natural color images.

6. APPENDIX

Mathematical proof of eq. (5):

di < d2 , �
2 + 2�

k2�� d12

1� k2
+ d

2
12 > 0:

Let us de�ne the polynomial P (�) as

P (�) = �
2 + �

k2�� d12

1� k2
+ d

2
12:

Reduced discriminant Q of P (�) is

Q = Q(�) =
(k2�� d12)

2

(1� k2)2
� d

2
12;

Q(�) > 0 , k
2�2 � 2d12�+ (2 � k

2)d212 > 0

, Q
0

(�) > 0;

with Q
0

(�) = k2�2 � 2d12�+ (2 � k2)d212. The two roots

of Q
0

are �1 = d12 and �2 =
2�k2

k2
d12 ; thus

Q
0

(�) > 0 , � < d12 or � > �2:

Condition � < d12 is always satis�ed, so that Q(�) is al-
ways positive. Hence, P (�) has two roots, �1 (as de�ned in
x2.4.2) and �2 (�2 > �). Then,

P (�) > 0 , � < �1 or � > �2:

Because � > �2 > � is contrary to the hypothesis of x2.4.2,

P (�) > 0, � < �1 , that is di < d2 , � < �1:
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Figure 8: R-G-B noisy test pattern : after mm, VML1 and VML2 �ltering (resp. top, center and bottom).

Figure 9: R-G-B noisy image, �ltered by a 3�3 marginal median (left) and by a 3�3 VML2 �lter (right).

Figure 10: Y-U-V noisy image, �ltered by a 3�3 mm �lter (left) and by a 3�3 VML2 �lter (right).


