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ABSTRACT 

Acoustic echo cancellers for hands free telephony require 
filter impulse response sizes between 128 and 256 ms to 
reach a sufficient error return loss enhancement. Using a 
sampling rate of 16 kHz yields filter sizes of 2000 to 4000 
coefficients. 

For real time implementations on digital signal proces- 
sors (DSPs) time domain based adaptive filters need huge 
processing power. Filtering in frequency subbands [5] or 
using block adaptive filter algorithms can reduce the al- 
gorithm complexity significantly. 

In this paper the Partitioned Exact Frequency Domain 
Block NLMS (PEFBNLMS) algorithm is presented which 
is mathematically an exact formulation of the time do- 
main NLMS algorithm. The PEFBNLMS algorithm com- 
bines a computational complexity reduction of 3 to 5 times 
compared to the NLMS algorithm wit,h the same tracking 
ability. 

1. THE PARTITIONED FREQUENCY 
DOMAIN BLOCK LMS ALGO- 
RITHM (PFBLMS) 

Partitioning the filter impulse response is known as 
a method to reduce the signal delay of large block 
adaptive filters [2] [3]. As figure 1 illustrates the fil- 

(PI ter u,., is divided into N subfilters zL where each 
(P) subfilter calculates the estimation signal vector ys . 

x&w-u+w x:,w 

Figure 1: Partitioning the filter impulse response 
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with 

&,B(kB) = [ gL(kB - B + 1) ... gL(kB) ] 

&kB)= [ z(kB-L+l) ... z(kB) ] 

&(kB)= [ e(kB-B+l) ... e(kB) ] 

&kB) = [ d(kB - B + 1) ... d(kB) ] 

&‘(kB) = [ w’(P+l).L-l(kB) . . w(“‘~)(~B) ] 

XL,B(kB - p . L) represents the delayed excitation 
signal matrix of order (L x B), c, the excitation sig- 
nal vector, e, the error signal vector, & the desired 

signal vector and Tut’ the subfilter impulse responses. 

As the convolution part of the PFBLMS algorithm 

the correlation part can be partitioned. Using the 
same partition size L for convolution and correla- 
tion part yields the highest complexity reduction for 

fastest convergence. 

= 

XL,B(kB - (N - l)L) 

+CY 

XL,;(W 1 . e, (W 
Using the overlap & save technique [4] convolution 
and correlation can be implementated efficiently with 
reduced numerical complexity in the frequency do- 
main. 

Convolution part: 

yCP)(kB) =[OB M-B IB,B] . I$& -B 

.[; (kB-p.L);F!‘(P’(kB)] M -M 
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with the delayed excitation signal spectrum vector 

&(kB-p.L)= FM,M.:M(~B-~*L) 

and the subfilter transfer function 

&t’(kB) = FM,M * Rr, L . g(Lp) (kB) 7 
OM-L,M-L 1 

0 0 ... 0 1 
0 0 .** 1 0 

R L,L = *. 

0 1 *** 0 0 

1 0 ... 0 0 

Where FM,M resp. Fifnf are the Fourier matrix resp. 

the inverse Fourier matrix, OB,M-B the zero matrix 

and IB,B the identity matrix. The operator CG per- 
forms an element wise multiplication of two complex 

valued vectors. 
In the same way as the convolution part the compen- 
sator vector update of the correlation part is calcu- 
lated in the frequency domain 

XL,B(kB -p.L) .e,(kB) = 

[RL,L OL,M-LI.&;M 

.[&(kB -p-L) @EM( 

with the error signal spectrum vector 

EM(kB) = FM,M * 
OM-B,M-B 1 eB(W . 

If we assume that 6 is an integer the excitation signal 

spectrums kM (kB - p . L) need not to be calculated 
for each subfilter in the convolution and correlation 
part. By using a tap delay line in frequency domain 
the instant spectrum & (kB) can be reused for sub- 
filters of higher order (p) in following block sampling 
times. 

2. THE PARTITIONED EXACT FRE- 
QUENCY DOMAIN BLOCK NLMS 
ALGORITHM (PEFBNLMS) 

For correlated input processes like speech the 
PFBLMS algorithm shows a poor tracking behavior 
because the sub diagonal elements of the error signal 
correction matrix SB,B(~B) are not small compared 
with main diagonal elements [l]. To improve the con- 
vergence speed we correct the error signal vector of 
the PFBLMS algorithm ,gFBLMS in such a way that 
this vector is equal to the NLMS algorithm error sig- 
nal vector ,gLMS. Using the corrected error signal 
vector ,gLMS in the correlation part of the adaptive 
filter results the same tracking behavior as the NLMS 
algorithm. 

Starting from the NLMS algorithm equations in the 

time domain 

4) = y(k) -:;L@) .uNL(k - 1) 

UINL(k) = IQ,,@ - 1) + 4k) 
II:,,(k)112 

'zNL@) 'e(lc) 

we write the error signal e(k) for sampling times from 
kB-B+ltokB 

e(kB - B + 1) = y(kB - B + 1) 

- c;~.(ICB - B + 1) . tu,rL(kB - B) 

e(kB - B + 2) = y(kB - B + 2) 

- ggL(kB - B + 2) . g\r,(kB - B) 

a(kB - B + 1) - 
IIgNL(kB - B + 1)112 . e(kB - B + ‘) 

~;~(lcB - B + 2) .gA\rL(kB - B + 1) 

. . . 

e(kB) = y(kB) 

-cT,,W)~ZUNLW--B) 

cu(kB - B + 1) - 
IIgNL(kB - B + 1)1/z ’ e(kB - B + ‘) 

. &, (W . c,\v, (kB - B + 1) 

*.. 

a(kB - 1) - 
IIgNL(kB - 1)112 . e(kB - ‘) 

. d&B) . z,vLW - 1). 

This system of equations can be rewritten in matrix 
form 

eNLMS(kB) = [IB,B + SB,B(kB)]-1 -B 

* [y,(kB) - XA$,,,(kB) . w,,(kB)] 

= [IB,B + SB,B(kB)Iel 

4!;FBLMS(kB) 

with the normalized error signal vector of 
PFBLMS algorithm 

zPFBLMS(kB) = 

cu(kB -B + 1) 

IlgNL(kB - B+ 1)112 ‘.’ ’ 

the 

.b,(kB) - Xi&&B) * uNL(kB)l 
and the lower t,riangle error signal correction matrix 

0 . . . a (kB) 
IIENL(kB)Il* 

SB,B(kB) = 

Zl,,(kB -"B + 
0 . . . 0 

2, -1) 
S,,(kB - B + 3, -2) i&B-08+3,-I) 1:: 

0 
0 

. . . 

_ i,,(kB,-B + 1) I,,(kB,'-I3+2) ..: 0 
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128 128 256 16 64 

128 384 512 6 128 

128 384 512 6 64 

256 256 512 8 256 

256 256 512 8 128 

256 768 1024 3 256 

256 768 1024 3 128 

BIL M N LAKF MR I AC 

128 1 128 256 16 128 

Table 1: Relative algorithm complexity (.4C) and 
relative memory requirement (MR) of the 

PEFBNLMS- compared with the NLMS al- 
gorithm 

which contains autocorrelation coefficients 

d,,(k,E) =&k) .gL(k + I). 

For the error vector correction an estimation of au- 
tocorrelation coefficients O,, (k, I) and the inversion 
of the lower triangle matrix [IB,B -t- SB,B(kB)] mUSt 

be carried out. The most expensive operation con- 
cerning memory occupation and computational com- 
plexity represents the autocorrelation function up- 
date which can be calculated recursively. 

i,,(k,Z) = O,,(k - 1,l) 

+x(k) . z(k + 1) - z(k - L) . z(k - L + 1) 

To avoid an instable behavior due to an accumula- 

tion of numerical round-off errors the autocorrelation 
function i,,(k, 1) must be reinitialized periodically. 
Combining the estimation of S,, (k, 1) and the matrix 
inversion the memory occupation can be reduced to 
2. B words necessary to store the autocorrelation co- 
efficients. 
Additional complexity reduction can be achieved if 
less autocorrelation coefficients LAKF are used for 
the error vector correction. The tracking ability of 
the PEFBNLMS algorithm is still sufficient if we use 

LAKF = $! coefficients in case of speech as excitation 
signal. 
In table 1 the numerical complexity measured by 
the number of multiplications and the memory re- 
quirement of the PEFBNLMS algorithm is compared 
with the NLMS algorithm. For compensator im- 
pulse response sizes between 2000 and 2300 coeffi- 
cients and block sizes between 128 to 256 samples 
the PEFBNLMS algorithm needs up to 5 times less 
computational power than the NLMS algorithm. 

3. REAL-TIME MEASUREMENTS 

To compare the tracking ability of the PEFBNLMS 

and the NLMS algorithm both algorithms were imple- 
mented in an echo compensation environment work- 
ing with a sampling rate of 8 kHz as shown in figure 2. 

We use the floating point DSP TMS320C44 of Texas 
Instruments. 

from far speaker to far 

+ 
speaker 

Figure 2: Echo compensation environment, 

For reproducible measurements bhe loudspeaker- 
room-microphone system (LRMS) was simulated by 
two measured impulse responses of an office room 
which were truncated aft.er 920 coefficients. To illus- 

trate the tracking behavior a switch between the two 
impulse responses was performed after 14 seconds. 

The algorithms were tested with speech as excitation 
signal which contains several speech pauses. To sim- 
ulate room background noise white noise was added 
to the microphone signal. The SNR over time ca.n be 

examined in figure 3. 

0.1 

0.01 

0.001 
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Figure 3: SNR of the desired signal 

..a LRMS output signal power 
- background noise signal power 
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Figure 4: Convergence speed of the PEFBNLMS al- 
gorithm 

L = 192 B = 64 N=5 
M = 256 LAKF = 64 cr = 1.0 
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- error signal power 
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Figure 5: Convergence speed of the NLMS algorithm 

L = 940 cl = 1.0 

... desired signal power 
- error signal power 

Figures 4 to 6 depict the desired- and errror signal 
powers over time. For a better clearness all curves 
are smoothed by a first order IIR-filter 

Z”(k) = A * Z2(k - 1) + (1 - X) . z”(lc), x = 0.999. 

A comparison of figures 4 and 5 indicates the com- 
parability of convergence speed of the PEFBNLMS 
and the NLMS algorithm. Due to periodical reini- 
tialisation of t.he autocorrelation coefficients of the 
correction matrix SB,B(ICB) the PEFBNLMS algo- 
rithms shows a stable behavior for hours even after 
the measurement time of 30 seconds. 

Using less than B autocorrelation coefficients for the 
error signal correction yields additional algorithm 

complexity reduction. As figure 6 illustrates the con- 
vergence speed is not reduced significantly if we use 
t autocorrelation coefficients instead of B. 

Figure 6: Convergence speed of the PEFBNLMS al- 
gorithm 

L = 192 B = 64 N=5 
M ~256 LAKF ~32 CY = 1.0 

. . . desired signal power 
- error signal power 

4. CONCLUSIONS 

In this paper a mathematical exact formulation of 
the time domain NLMS algorithm was derived for 
the frequency domain. The PEFBNLMS algorithm 
combines a reduced numerical complexity with the 
same tracking ability as the NLMS algorithm. 
The theoretical results were reconsidered by real-time 
measurements in an acoustic echo compensation en- 
vironment. It was shown that the PEFBNLMS al- 

gorithm behave stable if the error signal correction 
matrix was reinitialized periodically. 

REFERENCES 

PI 

PI 

[31 

PI 

PI 

Jacob Benesty and Pierre Duhamel. A Fast Exact 
Least Mean Square Adaptive Algorithm. IEEE 
l%ans. on Signal Processing? volume 40, Decem- 
ber 1992. 

G.P.M. Egelmeers. Real Time Realization Con- 
cepts of Large Adaptiwe Filters. PhD t,hesis, Tech- 
nical University Eindhoven, 1995. 

P. Estermann. Adaptive Filter im fiequenzbe- 
red: Analyse und Entwurfsstrategie. PhD the- 
sis; Eidgenossische Technische Hochschule Ziirich, 
1996. 

Gregory A. Clark, Sydney R. Parker and San- 
jit K. Mitra. A Unified Approach to Time- and 
Frequency-Domain Realizations of FIR Adaptive 
Digital Filters. IEEE Trans. on Acoustics, Speech, 
and Signal Processing, volume 31, October 1983. 

B. Nitsch and S. Binde. Stabilizing the LFTF al- 
gorithm by Leakage control. In Proc. EUSIPCO- 
96, Eighth European Conference On Signal Pro- 
cessing, pages 1389-1392, September 1995. 

lwAENC’97 
48 


