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ABSTRACT —
= (p)
= Z Yy (kB
Acoustic echo cancellers for hands free telephony require p=0
filter impulse response sizes between 128 and 256 ms to N-1
reach a sufficient error return loss enhancement. Using a = Z X f, gkB—p-L)- Q(Lp) (kB)
sampling rate of 16 kHz yields filter sizes of 2000 to 4000 p=0
coefficients. _ _
For real time implementations on digital signal proces- es(kB) = dp(kB) gB(kB)
sors (DSPs) time domain based adaptive filters need huge with
processing power. Filtering in frequency subbands [5] or
using block adaptive filter algorithms can reduce the al- X..5(kB) = [ z,(kB-B+1) z,(kB) ]
gorithm complexity significantly. T
zy(kB)=[ (kB-L+1) z(kB) |

In this paper the Partitioned Exact Frequency Domain
Block NLMS (PEFBNLMS) algorithm is presented which

araodlan awant fovmnlationn ~AF tha $3en

is uj.abht:luaubauy an exact formulation of the time do-
main NLMS algorithm. The PEFBNLMS algorithm com-
bines a computational complexity reduction of 3 to 5 times
compared to the NLMS algorithm with the same tracking
ability.

[

Partitioning the filter impulse response is known as
a method to reduce the signal delay of large block
adaptive filters [2] [3]. As figure 1 illustrates the fil-

ter wy.;, is divided into N subfilters w(” where each
subfilter calculates the estimation signal vector y(p)
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Figure 1: Partitioning the filter impulse response
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ex(kB)=[ e(kB-B+1) --- e(kB) ]
d5(kB) = [ d(kB— B +1) i

Q(Lp)(kB) - [ w(p+1).L—1(kB)

—

]
w® M (kB) ]

X1 (kB — p- L) represents the delayed excitation
signal matrix of order (L x B), g the excitation sig-
nal vector, eg the error signal vector, dg the desired
signal vector and w y ) the subfilter impulse responses.
As the convolution part of the PFBLMS algorithm
the correlation part can be partitioned. Using the
same partition size L for convolution and correla-
tion part yields the highest complexity reduction for
fastest convergence.

WO kB-B) |

ep(kB)

Using the overlap & save technique [4] convolution
and correlation can be implementated efficiently with
reduced numerical complexity in the frequency do-
main.

Convolution part:

¥\P)(kB) =[0p,p-8 Ip,B] - Fij'y
[ XykB-p-L)® ﬁ’}) (kB)]
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with the delayed excitation signal spectrum vector
m(kB—p-L)=Fum -zy(kB-p-L)

and the subfilter transfer function

;’i",r(p)n ny _ 1 . r RL,L Q?)(kB) -l
Wy (kB) = Fu.m Ot oz
Foo 0 11
'o 0 10
Ry =
01 0 0
10 - 0 0]

Where Fys pr resp. F;I,l s are the Fourier matrix resp.
the inverse Fourier matrix, Op,;s—p the zero matrix
and Ip p the identity matrix. The operator ® per-
forms an element wise muitiplication of two complex
valued vectors.

TIn the samae wav ag tha convaluition nart the caomnen-
In the same way as the convolution part the compen
sator vector update of the correlation part is calcu-

lated in the frequency domain

Xp (kB —p-L)-eg(kB) =
[Re.L OL.m—1]" Fig'y

ry* (kB — p ™ o I (1.D\]
TAM\MD — P L)Y L p\RD )]

with the error signal spectrum vector

Ey(kB) = Fyn - [ O iR ] .

L EB\RD) 1

If we assume that % is an integer the excitation signal
spectrums X ,;(kB — p- L) need not to be calculated
for each subfilter in the convolution and correlation
part. By using a tap delay line in frequency domain
the instant spectrum X ,,(kB) can be reused for sub-
filters of higher order (p) in following block sampling
times.

2. THE PARTITIONED EXACT FRE-
QUENCY DOMAIN BLOCK NLMS
ALGORITHM (PEFBNLMS)

For correlated input processes like speech the
PFBLMS algorithm shows a poor tracking behavior
because the sub diagonal elements of the error signal
correction matrix Sp p(kB) are not small compared
with main Qld.gOIld.l elements ll] .LO 1mpr0ve me con-

vergence speed we correct the error signal vector of
the PFRL.MS nlo‘nnf'hrq ‘,PFBLMS in such a way that

A0 DD DaaVao Qigliiiiil Sulii & viiau

this vector is equal to the NLMS algorithm error sig-
nal vector ef“MS. Using the corrected error signal
vector e} M5 in the correlation part of the adaptive
filter results the same tracking behavior as the NLMS

algorithm.
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Starting from the NLMS algorithm equations in the

tima domain

viiidT GULLIdnI

e(k) = y(k) — zip (k) - wnp (k= 1)
a(k)

lzn L (B)IZ -z (k) - e(k)

we write the error signal e(k) for sampling times from
kB—-B+1to kB
e(kB-B+1)=y(kB-B+1)

—2T (xR _B1+1).
zn (kB +1)

e(kB—B+2)=y(kB— B +2)
— 25, (kB-B+2) wy, (kB - B)
a(kB-B+1)

wnp (k) =wyp(k—1) +

IE°
=z
=

n \|| (kB -B+ 1)
llizn, (B — B +1)||
:L'NL(kB B+2)-zy, (kB-B+1)
e(kB) = y(kB)
_zNL(kB) wyp (kB — B)
a(kB—-B+1)

.e(kB—R-L1

N—

" NznL kB =B + 1|2
-2}y, (kB) -2y, (kB — B +1)

a(kB — 1)
- ||£NL(kB - 1| :
'£11:1L(kB) Zy (kB —1).
This system of equations can be rewritten in matrix
form
eNMS(kB) = Ip g + Sp,p(kB)] !
[up(kB) = Xx1 p(kB) - wy (kB)]
= [IB,B + gB,B(kB)]—I
. gEFBLMS (1. By

with the normalized error signal vector of the

PFBLMS algorithm

gPFBLMS (1B) —
[ akB-B+1) 0 1
lzni (kB — B+ D |
' o(kB)
0 U Ve (EBYI2
L I AL || |

[
'[EB(kB XNL B(kB) - wn (kB))

and the lower triangle error signal correction matrix

Sp p(kB) =
0 0 )
$22(kB— B +2,-1) 0 e 0 ]
320(kB— B+3,—2) §z.(kB—B+3,-1) 0
L 8zz(kB,~B+1) 8zz(kB,—B +2) e 0]
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BT L [ M [N][ZLixr | MR ][ AC
128 | 128 | 256 128 2.41 | 0.30
128 | 128 | 256 64 2.39 | 0.27
128 | 384 | 512 128 3.47 [ 0.25
128 | 384 | 512 64 3.46 | 0.22

256 2.81 | 0.29
128 2.78 | 0.22
256 3.94 | 0.25
128 3.92 | 0.19

256 | 256 | 512
256 | 256 | 512
256 | 768 | 1024
256 | 768 | 1024

[l |
WwWowD DG o2

Table 1: Relative algorithm complexity (AC) and
relative memory requirement (MR) of the
PEFBNLMS- compared with the NLMS al-
gorithm

which contains autocorrelation coefficients

For the error vector correction an estimation of au-
tocorrelation coefficients 8.,(k,!) and the inversion
of the lower triangle matrix [Ip g + Sp p(kB)] must
be carried out. The most expensive operation con-
cerning memory occupation and computational com-
plexity represents the autocorrelation function up-
date which can be calculated recursively.

§zz(kvl) = .§“_-(k - 171)
+z(k) -z(k+1) —z(k— L) -z(k—-L+1)

To avoid an instable behavior due to an accumula-
tion of numerical round-off errors the autocorrelation
function §,,(k,!) must be reinitialized periodically.
Combining the estimation of §.,(k,!) and the matrix
inversion the memory occupation can be reduced to
2. B words necessary to store the autocorrelation co-
efficients.

Additional complexity reduction can be achieved if
less autocorrelation coefficients L 4xr are used for
the error vector correction. The tracking ability of
the PEFBNLMS algorithm is still sufficient if we use
Lakr = % coefficients in case of speech as excitation
signal.

In table 1 the numerical complexity measured by
the number of multiplications and the memory re-
quirement of the PEFBNLMS algorithm is compared
with the NLMS algorithm. For compensator im-
pulse response sizes between 2000 and 2300 coeffi-
cients and block sizes between 128 to 256 samples
the PEFBNLMS algorithm needs up to 5 times less
computational power than the NLMS algorithm.

3. REAL-TIME MEASUREMENTS

To compare the tracking ability of the PEFBNLMS
and the NLMS algorithm both algorithms were imple-
mented in an echo compensation environment work-
ing with a sampling rate of 8 kHz as shown in figure 2.
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We use the floating point DSP TMS320C44 of Texas
Instruments.

from far speaker | to far speaker

1
1
-1

Figure 2: Echo compensation environment

For reproducible measurements the loudspeaker-
room-microphone system (LRMS) was simulated by
two measured impulse responses of an office room
which were truncated after 920 coefficients. To illus-
trate the tracking behavior a switch between the two
impulse responses was performed after 14 seconds.

The algorithms were tested with speech as excitation
signal which contains several speech pauses. To sim-
ulate room background noise white noise was added
to the microphone signal. The SNR over time can be
examined in figure 3.
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Figure 3: SNR of the desired signal

LRMS output signal power
- background noise signal power
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Figure 4: Convergence speed of the PEFBNLMS al-
gorithm

L=192 B=64 N=35
M =256 Lsxrp=64 oa=1.0
desired signal power
—  error signal power

001 | :

0.001 |

signal power

0.0001

le-05 E

0 5 10 15 20 25 30
time [s]

Figure 5: Convergence speed of the NLMS algorithm
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Figures 4 to 6 depict the desired- and errror signal
powers over time. For a better clearness all curves
are smoothed by a first order IIR-filter
(k) =A-T2(k—1) + (1 - X -22(k), X=0.999.
A comparison of figures 4 and 5 indicates the com-
parability of convergence speed of the PEFBNLMS
and the NLMS algorithm. Due to periodical reini-
tialisation of the autocorrelation coefficients of the
correction matrix Sp g(kB) the PEFBNLMS algo-
rithms shows a stable behavior for hours even after
the measurement time of 30 seconds.

Using less than B autocorrelation coefficients for the
error signal correction yields additional algorithm
complexity reduction. As figure 6 illustrates the con-
vergence speed is not reduced significantly if we use
% autocorrelation coefficients instead of B.
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Figure 6: Convergence speed of the PEFBNLMS al-
gorithm
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4. CONCLUSIONS

In this paper a mathematical exact formulation of
the time domain NLMS algorithm was derived for
the frequency domain. The PEFBNLMS algorithm
combines a reduced numerical complexity with the
same tracking ability as the NLMS algorithm.

The theoretical results were reconsidered by real-time
measurements in an acoustic echo compensation en-
vironment. It was shown that the PEFBNLMS al-
gorithm behave stable if the error signal correction
matrix was reinitialized periodically.
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