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ABSTRACT 

In this paper, we derive a new optimum time-variant step- 
size for the adaptation of an echo cancellation filter. The 
optimum stepsize is then used in the form of cost functions 
to evaluate the performance of stepsize control methods. 
Finally, we show first results of combining a number of es- 
timators for stepsize control by means of a neural network 
trained on this stepsize and a suitable cost function. 

INTRODUCTION 

One main problem in acoustic echo cancellation is 
the determination of a time-variant stepsize, given 
the measurable signals. This problem consists of two 
parts: first, an optimal stepsize must be determined 
theoretically. This stepsize depends on the misad- 
justment of the echo cancellation filter and on the 
background noise level. Since none of these values 
can be measured directly, several estimation meth- 
ods [l, 3, 4, 61 have been proposed for that purpose. 
Those methods for stepsize control were derived on 
condition of assumptions which do not necessarily 
hold, so that the methods are not completely reliable. 
In order to obtain a reliable control algorithm, com- 
.binations of the methods should be used [l, 21. These 
combinations have usually been found and optimized 
by trial-and-error on the basis of one specific applica- 
tion and adaptation system. Whenever characteris- 
tics of the system are changed, such as prewhitening 
filters, delay, sampling rate, or the characteristics of 
the environment in which the telephone set operates, 
optimization has to be carried out anew. 

The adjustment of the parameters for the combi- 
nation of the criteria is difficult and timely when 
done empirically. Their optimization may be crucial, 
though, for the comparison of different control meth- 
ods. In section 1 of this paper, we therefore derive 
an optimum stepsize which can be used for automatic 
evaluation of a given stepsize control algorithm. Some 
cost functions based on this stepsize will be discussed 
in section 2 before they are used to train a neural net- 
work in order to optimize the combination of stepsize 
control criteria. Some results obtained with those 
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networks are given in section 3, followed by a conclu- 
sion. 

1. THEORETICALLY 
STEPSIZE 

OPTIMUM 

In this paper, we concentrate on the ELMS algo- 
rithm, since it is widely used and easy to implement. 
Its adaptation equation is 

c(k + 1) = &c) + a@) e@)z(k) 
lla(k)l12 

(1) 

with c(k) the echo cancellation filter vector, c(k) the 
incoming signal vector, e(k) the distorted error, and 
a(k) the stepsize at time k. 

The optimum stepsize at time k is defined here as the 
stepsize that minimizes the Euclidean distance 119 - 
c( k + 1) ] 12, g representing the room impulse response. 
If we substitute c(k + 1) as in equ. 1, and calculate 
the partial derivative in the direction of a(k), the 
condition reads 

4k)W w&Mk)* 

TmiF- Ile(k)l12 (2) 

with c(k) representing the adaptation error. In most 
applications, this equation is simplified by assuming 
the squared Euclidean norm of :(k) to be constant, 
and the joint moment of adaptation error and distor- 
tion to be zero [6], which leads to 

This stepsize is easily interpretable: the higher the 
background noise level is in relation to the adaptation 
error power, the lower is the stepsize, in the range of 
[O,l]. Thus, we can derive stepsize control mecha- 
nisms from noise estimation and double talk detec- 
tion. 

Unfortunately, the assumptions necessary for the cal- 
culation of aopt, (k) are not appropriate for speech 
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signals. In order to examine how the simplification 
affects convergence speed, we carried out several sim- 
ulations in which all signals, including the adapta- 
tion error, were known. Their statistic characteristics 
had to be estimated, though, since we applied real 
speech signals. The expected values were estimated 
by means of a first order all-pole filter: 

2(k) = X&k - 1) + (1 - X)y2(k). (5) 

by the adaptation error. Thus, adaptation speed is 
the same as for the undisturbed case, which leads 
to much better convergence in noisy environments. 
cr,,,,s(k) can also be derived from equation 2 by set- 
ting the argument of the expected value to zero. 

Comparison of the two stepsizes can be made by cal- 
culating the mean reduction of the misadjustment: 

JWW = E{IIg(W - &)l12 - IlgW - dk + 1N”I 
(7) 

We used a FIR room impulse response filter with 2000 
coefficients while the echo canceller had 1024. The 
simulations utilized different values of X and were car- 
ried out with a,,t,l(k) and a,t,z(k). Their results 
during double talk are displayed in fig. 1. For the 
first stepsize, convergence was achieved in any case, 
but its speed in double talk depended strongly on X. 
With cy opt,2(k), the echo cancellation filter did not 
even converge for any X in the case of double talk. 

\ , 

If we assume for both cases that IIc(k)ll” is a good 
estimation for N 0: (k) and can be taken out of the 
expectation operator, and that the adaptation error 
E(k) is orthogonal to the background noise n(k) , equa- 
tion 7 yields 

E{Al(k)l = E{Mk)l = $i:;:; E$;;;;l;j 

(8) 
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Figure 1: Euclidean distance 11g-c(k)l12 as a func- 
tion of the all-pole filter coefficient, with 
speech signals in double talk 

In the limit, convergence was fastest when instanta- 
neous values were used for the estimation of the ex- 
pected values in aopt,l(k), i. e. X = 0. In this case, 
the optimum stepsize reduces to 

and E{4k)2 1 
E{A3(k)’ = E{(lg(k)l12} (9) 

with Ai calculated by applying the stepsize ai( 

Since noise and adaptation error are assumed to be 
orthogonal, the variance of the adaptation error is 
smaller than the distorted error variance, and thus, 
convergence speed for cropt,3(k) is higher than for the 
other two stepsizes. 

Finally, we chose the stepsize of equ. 6 as the funct.ion 
to be approximated by t.he neural net, but its range is 
not limited like for aopt, (k). Since the training data 
for the neural network usually do not represent the 
real-time data properly, the net may become over- 
adapted to outlyers. Therefore, we limited the opti- 
mum stepsize to the interval [0, l] in order to limit 
sudden decreases in adjustment due to large stepsizes 
erroneously produced by the network. 

In this case, the reduction of misalignment in equ. 7 
is calculated as 

i 

cka 

T+b dk wvt,dk) E P, 11 

A3(k) = 0 ~o,t,sW < 0 (10) 

?l%F aopt,a(k) > 1 

With the assumptions made above and a supplemen- 
tary request of E(k) to be a zero mean process and 
the density functions of both e(k) and n(k) to be 
symmetric, we can then calculate the mean reduction 
of misalignment as 

(Y t3(k) - * 
e(k) ' 

(6) 
COO 

OP, - 2 
UE 2 

= -+- 
2Naz No; JJ f~(E)fn(n)(e(k)2-n(k)2)dEdn 

With this stepsize, the distorted error in the adapta- 0 --E 

tion equation of the KLMS algorithm is substituted (11) 

lWAENC’97 42 



The remaining integral cannot be solved without 
defining the probability density functions f,(&) and 
fn(n) of the adaptation error and the background 
noise, respectively. Solution for Laplace distribution 
of both n(k) and I yields 

whereas with zero-mean uniform distribution, we get 

(13) 

Comparison of these expected values with the mean 
reduction of misalignment obtained when applying 
~~,2(k) (see equ. 9) shows that with both Laplace 
and uniformly distributed processes, better conver- 
gence is obtained with the stepsize a,,t,s(k) intro- 
duced here, even though all the assumptions made 
for the derivation of (Y,~Q(~) hold for these distribu- 
tions. 

2. COST FUNCTIONS 

Besides, a cost function is needed that is minimized 
during the training process of the neural network. 
The simplest cost function is the sum of the squared 
errors 6,(k) = a,pt,3(k)-&pt(k) between the optimal 
stepsize and the stepsize produced by the network, on 
NT training samples. But this cost function does not 
take into account that small stepsizes are especially 
sensitive to poor estimation. 

In order to find a more suitable cost function, we cal- 
culate the misalignment A(k+ 1) as the misalignment 
obtained with the optimum stepsize and an additional 
positive term, 

A(k + 1) = A,,,(k) + 
6, (k>2e(k>2 

ll:@N12 
(14 

The cost function is constructed by summing up all 
the weighted error terms. 

NT d,(k)2e(k)2 
Cl = c 

kzO Ilc@)l12 (15) 

These error terms may additionally be devided by the 
previous misalignment, so as to emphasize the cases 
when the error is already small. For the last part of 
the equation, this leads to 

NT d,(k)2e(k)2 NT 4x @I2 

go W)lI:(k)l12 = k=O ao,t,3W2 + a 
c W-9 
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Adaptation with the delay coefficients 
method (above) and the correlation 
coefficient method (below) in various 
parametrizations 

with A(k)ll:(k)l12 M E(k)2 and a a. small number so 
as to avoid division by zero. 

Since the sensitivity of t.he human ear is proportional 
to the logarithm of the signal power, one is likely to 
judge the echo relative to earlier echo signals. On 
the other hand, loss of convergence in the beginning 
may be very hard to compensate for later on: so 
that the absolute measure might be more efficient. 
Furthermore, the simplifications used to obtain the 
cost functions of equ. 16 might have negative effects. 
Therefore, we tested the cost functions with respect 
to their capability of ranking a set of stepsize con- 
trol algorit.hms in a satisfying way. We controlled an 
adaptation sequentially by two algorithms, namely 
a simplified application of the correlation coefficient 
[3], and the delay coefficient met,hod [6], with various 
sets of parameters. Their mean adaptation results 
(ensemble average over ten runs for both single talk 
and double talk) are shown in fig. 2. Some results for 
the cost functions of equ. 14 and 16 during the adap- 
tation with the respective stepsize control methods 
are presented in table 2. 

Although the performance of the criteria in single talk 
was comparable, only the cost function Cl correctly 
classified the double talk cases controlled by the cor- 
relation coefficients as worse than the ones controlled 
by the delay method. We therefore chose Cl for the 
neural network experiments. 
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,Table 1: cost functions of equ. 14 and 16, averaged 
for 10 runs as shown in fig. 2, in single talk 
(s) and double talk (d) 

All of the criteria ranked the algorithms with low 
maximum stepsize (i. e. C, D, and H) over the other 
ones, although their performance was worse. This 
means that rather smooth convergence is prefered by 
the cost functions. As far as the training of neural 
networks is concerned, this may even be favourable, 
since it helps to avoid instability problems. 

3. APPLICATION IN A NEURAL 
NETWORK 

Our theoretical results were applied for the training of 
a multilayer perceptron (MLP) type neural network 
with backpropagation [5] in the modified version de- 
rived from minimizing equation 16. It consisted of 
the input layer of 2 neurons, two hidden layers of 5 
neurons each, and one output neuron. As input of 
the network, we used the parts that form the delay 
method, i. e. the estimated misalignment, and the 
inean squared error devided by the squared norm of 
the input vector. We trained the network with cost 
function Cl on about ten times the amount of sin- 
gle talk samples as of double talk samples, so as to 
compensate for the emphasis of double talk by the 
cost functions. Training was carried out for roughly 
600,000 samples, corresponding to 75 seconds real- 
time. The MLP was initialized randomly and trained 
during adaptation of the echo canceller with the op- 
timal stepsize. First results are shown in fig. 3. It can 
be shown that the network is capable of adjusting the 
stepsize, but that fast convergence in the beginning 
is prefered. 

4. CONCLUSION 

In this contribution, we discussed several ways to de- 
termine the optimum stepsize for an echo cancella- 
tion algorithm, given the misalignment and the far- 
end and near-end signals in the hands-free telephone 
set. We presented an optimum stepsize that can be 
calculated without knowing the statistical properties 

Figure 3: Adaptation with speech and stepsize con- 
trolled by the neural network in comparison to the 
artificial delay control method of [6] 

of the signals, and that nevertheless performs bet- 
ter than the statistically motivated optimum step- 
sizes. We could evaluate different stepsize control al- 
gorithms automatically by calculating a correspond- 
ing cost function. This cost function and optimum 
stepsize were then used to train a multilayer percep- 
tron which mapped the input signals onto a stepsize. 
Further studies have to be done to incorporate time 
delay and to select a representative database or set of 
training situations. 
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