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Abstract
The LMS-driven Adantive Periodic Noise Canceller (ADN(‘\ can be used for acoustic echo sunnression in the hands-
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free situation. Only recently has it been determined that the LMS algorithm can be robust [1]. The purpose of this
contribution is to apply the concept of robustness, as derived from [1], to the APNC, thereby introducing a useful
quantitative measure of performance.

This is achieved through an analysis of the performance of the APNC in an open-loop feedback system. Through the

application of H ™ theory, conditions are shown under which the APNC, driven by the LMS algorithm, will exhibit
robust performance properties. This has a direct application to the use of the APNC in echo control applications.
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1. Introduction

Perhaps the greatest technical challenge in the design of a hands-free speech terminal lies in the echo suppression
device which must attenuate the electro-acoustic feedback of the far end speech signal. Robust performance of the
Acoustic Echo Cancellation (AEC) device is essential in the context of hands-free telephony as the equipment must
providc sufficiently high spccch quality while dealing with sudden input disturbances [2].

Since the ucvelapment of the LMS algoritum oy Widrow | LJ], miuch rescarch has ulvcuigated the conditions under
which the algorithm will remain stable [4], [5], [6]. Unfortunately, algorithm stability will not guarantee robust
performance. Work has also focused on thc development of alternative echo cancellation algorithms and device
configurations. Although some may demonstrate improved performance, a primary disadvantage with most methods is
the increased complexity of implementation and sensitivity to changes at the input. This renders the system unsuitable
in an environment where the feedback echo can exhibit rapid fluctuations of magnitude.

It has been long known, especially experimentally, that LMS driven adaptive filter systems perform best in the most
adverse conditions. In relation to the input signal-to-noise ratio (SNR), this observation could be justified theoretically.
However, the experimentally observed robustness of such LMS adaptive systems has been known to extend beyond

bllllplC QLVI\ LUII\IUCI dllUllb

The robust performance analysis of the LMS algorithm provided in [1] initiated the process of establishing the formal
link between H'™ theory and the experimentally observed robusiness of the LMS algorithm. This contribution i‘ltt‘:i‘dS
to apply the ideas developed to the specific case of the APNC embedded in an open-loop system. The intention is to

model the nrar‘n(-al situation where the APNC is a nnlmd to cancel the echo component at its mnm

2. Theoretical Development

The APNC-based echo control system is modelled as in Fig.1 below. S(n) denotes the speech input and the echo is
represented by the output y(n) of an auto-regressive (AR) process, where the feedback path in turn represents the
acoustic environment. The analysis below assumes for simplicity that there is no speech signal present at the APNC
input.
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eln) = u(n) - W,,uln—1) (1)

where W, is the APNC wei

where W, is the APNC weight, and u(n) is formed from
uln) = v(n) —a,uln 1) @)

where v(n) is Gaussian white noisc and @, is the AR( 1) coefticient. With x{n) = u(n—1), (1) may be rewritten as
eln) = v(n) —(a, + W,, )Jx(n) 3)

In the ideal situation, the weight value cancels w1th the AR(1) coefficient lcaving only the generating white noise at

the outnut 171 The cecond term in (3D (vl\ o the racidual outnut error ag a function of the filter innut If the quctem ic tn
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exhibit robust performance, the energy of this error should be minimised by the adaptive solution. The LMS solution is
dependent on the choice of stepsize Ll and for robust performance it is necessary to determine the maximum upper

limit for L.

) - It o ) . .
Denoting the error term as &(n) and B, =—\a, +W,, ), the error at time n is

e(n) = an(n) 4)
B, can be interpreted as a time-varying ‘output error gain® and it is a function of all previous inputs and outputs.
Robust nerformance would im nl\/ that the 1 maunlhlr‘lp of thig gain is minimised over time and that signa! fluctuations at
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the input will not disturb this minimisation procedure.

.:

The LMS algorithm is given by

Wo, =W,,_, + 2],le(n — l)x(n - l) 5)
Adding a, to both sides and negating, (5) can be expressed in terms of B, ,
B, =B, , - 2ueln—1)x(n~1) {6)

Then, substituting from (3),
B, =B, (1-2ux*(n-1)) - 2wk -Dx(n-1) @

n

The evolution of B, is given by (7). Ideally, lim B, = 0 but in reality there will always be a small misadjustment, or

P
esiimation error, which is dependent on the terms v{n—ijand x{n—1). For robusi performance, the energy of the
misadjustment must not be greater than the energy of the components which created it. To examine how the
misadjustmem is sensitive to changes in the ulagi‘uluuc of thesc terms, the transfer function between the mput and
output must be described in matrix form in order to account for the system memory, i.e. show the evolution of B,
over time.

(4) can be represented as a time-varying matri

:‘
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L
>
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where e(n) denotes a vector of error outputs to time n.

By finding the H™ -norm of B, the peak value of the gain over the time interval n=1,..., N, can be determined.
This is defined as
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where the input disturbance is {p,_m( ) {)c(n)}’l l}wnh u ”2( ) being the (weighted) energy of the weight

2 oo *
error due to the initial guess and the A, - norm of x, is given as "X"2 = 2 X Xe -

For robust performance the energy of the residual error should be upper bounded by the energy of the disturbances
and the initial uncertainty. This translates into ensuring that the A~ -norm of the residual error gain matrix (B) must
be less then one,

o). <1

where B(u) indicates the dependence of B on the stepsize .
The H™-norm is calculated by finding the maximum singular values G, of B at each time instant and are given

by

Cprae = me(x,(BBT)) an

The matrix description of the system is given below

[e(1)

e(2) _

| e(N)

(12 x(1) 0 0 ]
1/2 (2) —2p.v(1)x(2) 0
n)Hk (=20 (0) —2pvx TS0 -2020) .. ~2p(n 1)) |

u—l/ZB
x(1)

b (12)

| x(N=1)

From (12), it is obvious that stepsize choice is a crucial factor affecting the maximum singular values.
Therefore, substituting (7) into (4) and focusing on the output error gain, this leads to

L =203 (- DB, +x(n-Du(n-D) <1 a3

To ensure that the energy of the disturbance x(n) is not amplified, the stepsize must be chosen so that
I—- 2uv(n— 1) x(n) x(n - l)l <1 (14a)
and

[-2uB, x*(n-1) <1 (14b)
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Empirically, the following choices of upper bound for the algorithm stepsizc parameter were made to examine if

robust behaviour was ensured,
1
p< ) (15a)
(2 XV 0 X xm)

(l—al)(zxx2 ) (le)

and,

<
3. Results

Simulations were carried out for the system shown in Fig.1 to test its robust performance qualitics. The APNC input
was an 400-point AR(]) process and with each simulation the value of the AR(1) coefficient was varied over the range
0.2 to 0.9. The maximum singular values (G, . ) of B(u) werce found for each iteration to check if (10) was
satisfied. The stepsizes chosen were as given in (15a) and (15b) above. For the choice of stepsize (15b). condition (10)
is indeed satisfied, as shown in Fig.3. For the choice (15a) it can be seen in Fig.2 that the G, . are greater than
unity for the smaller values of AR(1) coefficient. From Fig.3, it can be observed that the stepsize value (15b) gives
faster algorithm convergence and a better reduction in the output error €(n). Therefore, it can be concluded that

Stepsize (15b) demonstrates better robustness performance properties than (15a). Overall, both graphs show that the
APNC performs best under the worst casc conditions.
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4, Conclusion

In general, this investigation has provided an alternative method under which the echo cancelling performance of the
LMS algorithm can be analysed. The criteria for robustness has been shown to be a more stringent condition for
algorithm assessment and, more importantly, a practically meaningful quantity.
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