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Abstract 
The LMS-driven Adaptive Periodic Noise Canceller (APNC) can be used for acoustic echo suppression in the hands- 

free situation. Only recently has it been determined that the LMS algorithm can be robust [I]. The purpose of this 
contribution is to apply the concept of robustness, as derived from [I], to the APNC, thereby introducing a useful 
quantitative measure of performance. 
This is achieved through an analysis of the performance of the APNC in an open-loop feedback system. Through the 

application of H” theory, conditions are shown under which the APNC, driven by the LMS algorithm, will exhibit 
robust performance properties. This has a direct application to the use of the APNC in echo control applications. 
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1. Introduction 

Perhaps the greatest technical challenge in the design of a hands-free speech terminal lies in the echo suppression 
device which must attenuate the electro-acoustic feedback of the far end speech signal. Robust performance of the 
Acoustic Echo Cancellation (AEC) device is essential in the context of hands&cc telephony as the equipment must 
provide sufficiently high speech quality while dealing with sudden input disturbances [2]. 
Since the development of the LMS algorithm by Widrow [3], much research has investigated the conditions under 
which the algorithm will remain stable [4], [S], [6]. Unfortunately, algorithm stability will not guarantee robust 
performance. Work has also focused on the development of alternative echo cancellation algorithms and device 
configurations. Although some may demonstrate improved performance, a primary disadvantage with most methods is 
the increased complexity of implementation and sensitivity to changes at the input. This renders the system unsuitable 
in an environment where the feedback echo can exhibit rapid fluctuations of magnitude. 
It has been long known, especially experimentally, that LMS driven adaptive lilter systems perform best in the most 
adverse conditions. In relation to the input signal-to-noise ratio (SNR), this observation could be justified theoretically. 
However, the experimentally observed robustness of such LMS adaptive systems has been known to extend beyond 
simple SNR considerations. 
The robust performance analysis of the LMS algorithm provided in [I] initiated the process of establishing the formal 

link between H” theory and the experimentally observed robustness of the LMS algorithm. This contribution intends 
to apply the ideas developed to the specific case of the APNC embedded in an open-loop system. The intention is to 
model the practical situation where the APNC is applied to cancel the echo component at its input. 

2. Theoretical Development 

The APNC-based echo control system is modelled as in Fig.1 below. s(n) denotes the speech input and the echo is 

represented by the output u(n) of an auto-regressive (AR) process, where the feedback path in turn represents the 

acoustic environment. The analysis below assumes for simplicity that there is no speech signal present at the APNC 

input. 
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Fig.1 Block Diagram of Simple APNC and Echo Model 

The APNC output e(n) is given by 

e(n) = u(n) - won& - 1) (1) 

where W,, is the APNC weight, and u(n) is formed from 

u(n) = v(n) -a,u(n - 1) (2) 

where v(n) is Gaussian white noise and a, is the AR( 1) coefficient. With x(n) = u(n - I), (I) may be rewrillen as 

e(n) = v(n) -(a, + Won)&) (3) 

In the ideal situation, the weight value cancels with the AR(l) coefficient leaving only the generating white noise at 
the output [7]. The second term in (3) gives the residual output error as a function of the filter input. If the system is to 
exhibit robust performance, the energy of this error should be minimised by the adaptive solution. The LMS solution is 

dependent on the choice of stepsize p and for robust performance it is necessary to determine the maximum upper 

limit for /J. 

Denoting the error term as E(n) and B,, = -(a, + Won), the error at time n is 

E(n) = B,x(n) (4) 

B,, can be interpreted as a time-varying ‘output error gain’ and it is a function of all previous inputs and outputs. 

Robust performance would imply that the magnitude of this gain is minimised over time and that signal fluctuations at 
the input will not disturb this minimisation procedure. 

The LMS algorithm is given by 

W,” = won-, + 2/&z - 1)&z - 1) 

Adding a, to both sides and negating, (5) can be expressed in terms of B, , 

B, = B,-, - 2pe(n - l)x(n - 1) 
Then, substituting from (3), 

(5) 

(6) 

B, = B,-, (1 - 2px2 (n - 1)) - 2pv(n - l)x(n - 1) (7) 

The evolution of B, is given by (7). Ideally, lim Bn = 0 but in reality there will always bc a small misadjustment, or 

estimation error, which is dependent on the terms v(n - I) and x(n - I). For robust performance, the energy of the 

misadjustment must not be greater than the energy of the components which created it. To examine how the 
misadjustment is sensitive to changes in the magnitude of these terms, the transfer function bctwccn the input and 

output must be described in matrix form in order to account for the system memory, i.e. show the evolution of B, 
over time. 
(4) can be represented as a time-varying matrix 

E(n) = B&z) (8) 

where &(n) denotes a vector of error outputs to time n. 

By Ending the H” -norm of B, the peak value of the gain over the time interval y1= 1,. . . , N, can be determined. 

This is defined as 
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(9) 

where the input disturbance is { -“’ (B, ), {&)},, } with cl-“2 ( p B, ) being the (weighted) energy of the weight 

error due to the initial guess and the h, - norm of xk is given as [Ix[[~ = Cy=, x;xk . 

For robust performance the energy of the residual error should be upper bounded by the energy of the disturbances 

and the initial uncertainty. This translates into ensuring that the H” -norm of the residual error gain matrix (B) must 
be less then one, 

(10) 

where B( j.L) indicates the dependence of B on the stcpsize /.k . 

The H" -norm is calculated by tinding the maximum singular values CY,rlux of B at each time instant and are given 

by 

cJ,rn, = $4cwiJ 

The matrix description of the system is given below 

(11) 

g2x( 1) 0 . . . 0 

j.P2x(2) -2pv(l)x(2) **. 0 
. . . . . . . . 

CLli2x(41~J1 - 2w2(k)) - 2pv(l)xh)~;;;(l- 2pxw) - . . . -2pv(n 1)x(n) 

[K”2,1 1 

(12) 

From (I 2), it is obvious that stepsize choice is a crucial factor affecting the maximum singular values. 
Therefore, substituting (7) into (4) and focusing on the output error gain, this leads to 

B n-l -2p(x2(rz- l)B,-, +xtn- 1)&z- l)]S 1 (13) 

To ensure that the energy of the disturbance x(n) is not amplified, the stepsize must be chosen so that 

I- 2p v(n - 1) x(n)x(n - 1)1 I 1 (l4a) 

and 

I- 2p B,-,x2 (n - 1)i2 I 1 (14b) 
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Empirically, the following choices of upper bound for the algorithm stepsizc parameter were made to examine if 
robust behaviour was ensured, 

ps 12xv,,xx2 A mm ) 
and, 

(W 

tl5b) 

3. Results 

Simulations were carried oul for the system shown in Fig.1 to test its robust performance qualities. The APNC input 
was an 400-point AR(l) process and with each simulation the value of the AR(l) coefficient was varied over the range 

0.2 to 0.9. The maximum singular values ( onmax ) of B(p) were found for each iteration to check if (IO) was 

satisfied. The stepsizes chosen were as given in (l5a) and (I 5b) above. For the choice of stepsize (l5b), condition (IO) 

is indeed satisfied, as shown in Fig.3. For the choice (l5a) it can be seen in Fig.2 that the onmax are greater than 

unity for the smaller values of AR(l) coefficient. From Fig.3, it can be observed that the stepsize value (I 5b) gives 

faster algorithm convergence and a better reduction in the output error E(n). Therefore, it can be concluded that 

Stepsize (l5b) demonstrates better robustness performance properties than (I 5a). Overall, both graphs show that the 
APNC performs best under the worst case conditions. 
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Fig.2 (5” ~ of B with Stepsize (15a) Fig.3 cSnmax of B with Stepsize (15b) 

4. Conclusion 

0 

In general, this investigation has provided an alternative method under which the echo cancelling performance of the 
LMS algorithm can be analysed. The criteria for robustness has been shown to be a more stringent condition for 
algorithm assessment and, more importantly, a practically meaningful quantity. 
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