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ABSTRACT

In this paper the signal subspace approach for non-
parametric speech enhancement is considered. Tra-
ditionally, the SVD (or the eigendecomposition) is
used in frame-based methods to decompose the vec-
tor space of the noisy signal into a signal- and noise
subspace [1 2, 5] Linear estimation of the clean sig-
Ildl llorﬂ LIIE uum.iud.mun lIl bIlE blgnal bul)bpd.(,e lb
then performed using a set of nonparametric estima-
tion criteria. In this paper, the rank-revealing ULV
decomposition is used 1nstead of the SVD, and we use
recursive updating of the estimate instead of work-
ing in frames. An ULV formulation of three different
estimation strategies is considered: Least Squares,
Minimum Variance and Time Domain Constrained.
Experiments indicate that the ULV-based algorithin
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i8 able to achieve the same Juaaity OI U4e recon-

structed speech signal as the SVD-based method.

1 SIGNAL AND NOISE MODEL

Let x = (z1,%Z2, --,T,)T denote the noisy signal
vector of m qamples and assume that the noise
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speech signal s, i.e., x =s+n.
A set of time thfted vectors can rg
a data matrix X = S + N ¢ R™* wt.h Toeplitz
structure where m > n. We assume that the noise
is broad-banded so rank(X) = rank(N) = n, and
that the speech signal can be described by a low
order model, giving a rank deficient matrix S with
rank(S) = p < n. This formulation includes, for ex-
mple. the damped compler sinusoid model. whi
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has often been attributed to speech signals.

anized in

2 ULV BASED SIGNAL ESTIMATION

One approach for nonparametric speech enhance-
ment, is linear estimation of the clean signal from the
nnigy gional al Thannra nthnde xrhioh
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are based on the rank-revealing ULV decomposition
(RRULVD) introduced by Stewart. (8].
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Assume that the singular values of X satisfy
UlZ"'ZapZT>>ap+IZ"'Z(7‘IL (1)

then there exists a matrix Ux € R™*" with orthog-
onal columns and an orthogonal matrix Vx € R™®*"
such that
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where Lx; € RP*P, Gx € R P)*(7-#) 5p4
R™"™ are lower triangular, and

o
p—g

omin(Lix1) =~ op (
IFx|2+(Gxlh ~ ol 4--+0? (4

~—

Thus, the signal- and noise subspaces defined by the
gap in the singular values can be estimated using the
RRULVD, where the quality depends on ||F x]||2.
An approzimate LS estimate Sars of the signal
matrix S can be computed by essentially substitut-
ing the RRULVD for the SVD based estimate [3],
thus replacing one problem with a similar, nearby
problem that can be solved more efficiently, i.e.,

Sars = XVx, V%, (5)

lﬂL LSEIIIlth‘ (()HVLI‘gEb to [Il(’ truc LJD S()lllTl()ﬂ if
the following condition is satisfied

o The off-diagonal matrix F x is zero.

ssum estimator § of the pure signal
matrix S is constrained to be a linear function of the
data matrix X, i.e., S = XW where W € R™*" is
a filter matrix, then the Minimum Variance (MV)
estimator problem [7] is to find the matrix W that
minimizes

Assume now that the estim

min tr (XW - S)T(XW -8)) = (6)

Wyv = (XTX)"1XTs (7)



Note, that under stationary and ergodic conditions,
the MV estimator converges asymptotically to the
Linear Minimum Mean-Squared Error (LMMSE) es-
timator as the number of rows m — oc [7].
To obtain the RRULVD based MV estimate pro-
posed in [4], i.e.,
SMV = XVX1L)—A (LX1 — o

noise

Ly ) Vi (8
we need the additional conditions

e The signal is orthogonal to the noise: STN = 0.

e The matrix N satisfy: N'N =02 . 1

noise "N

e There is a distinct gap in the singular values of
the matrix X: o, > 0p41.

¢ Gx = Opoiseln—p is a diagonal matrix.

The residual matrix R = S(W - I1,) + NW =
Rs + Ry minimized in the above method represents
signal distortion Rs and residual noise Ry. Since
both terms can not be simultaneously minimized, a
Time Domain Constrained (TDC) estimator is pro-
posed in [2] which keep the residual noise energy
€2 = tr(RLRn) below some threshold while mini-
mizing the signal distortion energy €2 = tr(RERys)

noise = (9)

2
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min €2 subject to

Worpe = (STS +v02,,,.1,)71STS  (10)

noise~1n

where ¢ is a fixed or SNR-dependent parameter (0 <
a < 1), and v is the Lagrange multiplier in (9). In
a practical implementation, -y is actually used as the
parameter.

. Given the above conditions, we propose a
RRULVD based TDC estimate, which can be ob-
tained by using the following RRULVD formulations
for Sand X

oo (5 8)(3F )

( (UsiLsi + NVg)Lyl NVgo .. )

noise

Lx: 0 VI, )
. 12
( 0 Unoiseln—p ) ( VZZ ( )

and the relation LY, Lx1 = LY, Ls1 + 02,1, ie.,

S

X

XVx1(Lx1 — 025, (1 — v)Lx1) ™" (13)
(Lx1 — 02, Lx )V,

noise

Stpc =

Note that for v = 0 we obtain (5) and for v =1
we obtain (8). For speech signals, the TDC estima-
tion criterion will control the nonstationary residual
noise with annoying noticeable tonal characteristics,
referred to as musical noise, since this noise compo-
nent decreases as v — 00.
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In practice, the above mentioned conditions are
never satisfied exactly, but the RRULVD is robust
with respect to mild violations of these conditions.

If the additive noise matrix N is colored, NTN #
02 ..In, then a prewhitening transformation can be
applied to the data matrix using the QR decomposi-
tion of N = QR

XR!=SR!+NR'=SR'+Q (14

One problem concerning the prewhitening transfor-
mation is the complicated update of the matrix
XR ! when X and N are updated. This can be
avoided by using the rank-revealing ULLV decom-
position [6] of the matrix pair (X, N), which allows
each matrix to be updated individually and deliv-
ers the required factorizations without forming the
quotients and products.

3 IMPLEMENTATION

The transformation y = V};x approximates the
Karhunen-Loeve transform (KLT) of x. Hence, all
the above mentioned linear signal estimates are ob-
tained by the following steps (see Figure 1)

e KLT of the noisy signal onto the signal subspace.

e Modify the components of the KLT by a gain
filter matrix G;.

¢ Inverse KLT of the modified components to re-
construct the signal in the signal subspace.

This scheme results in a generalized formulation of
the optimal linear estimator

§=Wx=Vx G Vi x (15)

where the matrix G; € IR?*? depends on the esti-
mation method as shown in the last section.

The two matrices Lx and V x necessary for com-
puting W are updated for each new sample z; cor-
responding to a new row in the data matrix X. A
new row is processed in the following four steps.

e Updating: The new row of X is incorporated
into the decomposition.

e Downdating: The oldest row of X is isolated
and removed in the decomposition.

e Deflation: Establishes and maintains the rank-
revealing nature of the decomposition.

e Refinement: The norm of F x is reduced to im-
prove the subspace quality.

Obviously, the filter matrix W is estimated in an
analysis window of width (m+n—1), centered around

10



the middle row of X. The linear estimator is ap-
plied to this row, giving a n-sample synthesis win-
dow. Finally, the enhanced vectors are combined us-
ing the overlap and add synthesis approach, which
corresponds to the LS esimate of the noise-free sig-

nal s; from the enhanced vectors [9)].

4 EXPERIMENTS
A recursive RRULLV algorithm has been developed

based on the methods given in [8) 6], and was applied
to speech s1gnals conta,mmdtcd b) an AR( , —0.7)
noise process. The noise matrix N was only updated
in periods without spcech, and the matrix dimension
was m = 141 and n = 20. In all simulations, a TDC
estimator is used.
The typlcal average SNR o

segment (voiced) using 100 111dependent noise real-
1za.t10ns and SI\R 5 dB is illustrated in Fig. 2 as
the signal subspace dimension p and
the parameter ~. Clearly, the MV estimate (y = 1)
gives the best SNR improvement and is less sensi-
tive to the choice of p compared with the other esti-
mates. However, if «y is chosen in the neighbourhood
of 1, the variations are minimal. Thus, using a fixed
value of p = 14 as in the following results, we are able
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speech. An informal listening test gave v = 2 as the
best fixed value, but a better choice is to make
dependent on the local SNR.

The RRULLV algorithm using a sliding window
was applied to the specch signal in Fig. 3 with added
broad-band noise (global SNR of 5 dB). Observe
from Fig. 4 that their is a SNR improvement using
the TDC estimate and that the variations among the

laeal SN Ra af tha variniig caomants are radiicad
10Ca1 OIN IS Ot til€ VariCus Segimenis are reaucedq.

In the RRULLV algorithm computations can be
saved by omitting the refinement. step, i.e., accepting
a larger ||F x||2, but then the singular values of Lx;
will underestimate the first p values o;(XR™!) by a
larger factor. Similarily, the singular values of Gx
will in general overestimate the corresponding last
n — p values o;(XR ™).

The graphs in Fig. 5 and 6 illustrates this problem.
Ht:u:, the average Si"guxal values of a pxt:whwc:ucd
voiced speech frame are compared with the one ob-
tained from Lyx; and G x with p = 14 and no refine-
ment. Note, that o;(Lx;) are plotted against the
first p indices, and 0;(Gx) are plotted from index
p+1to n. It is seen that the largest and smallest
singular values and thereby the dominant range and
nuii space are well determined by the RRULLVD,
while the subspaces are blurred together near the

rank-revealine noint » due to fhn off-diagonal block

fin-iCVearlily POy 2 Gat 1O Lo LI Qiagliial DiLla

Fx and the small gap in the singular spectrum. As
shown in Fig. 6, the quality can be increased by ap-
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plying a number of refinement steps.
In Fig. 7, the canonical angles hetween ¢

the canonical angles be the QSVD
and RRULLVD based signal subspaces arc plotted
against their indices, where the example corresponds
to the one in Fig. 5. As expected, there is a group
of large angles due to the mix of signal and noise
subspace. However, since the singular spectrum
of speech signals is relative constant at thc rank—
rev 'Gﬁhf‘g "‘Uﬁ'il,, this has n tical effe
reduction algorithm as shown in Flg 8. Here four
different speech segments all result in a reconstructed
average SNR, which is nearly independent of the
number of refinement steps. This is also why these
results closely match the QSVD based method.
Another issue is that the conditions for the
RRULLYV based estimates are typically not satisfied.
However, as demonstrated in Fig. 8, the method is

5 SUMMARY

A recursive signal subspace approach for noise reduc-

I
tion of ancach gionale ic nracantad Tha alaarithm 1
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formulated by means of the RRULVD using a pro-
posed set of estimators. The method is demonstrated
to be comparable with SVD-based methods.
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Figure 2 Average SNR of a reconstructed noisy (voiced)
speech segment using a TDC estimator with the listed y val-
ues, and SNR=5dB. The average is taken over 100 indepen-
dent noise realizations.
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Figure 3 Noise-free specch signal.
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Figure 4 The local SNR of noisy speech signal (global
SNR=5dB) and a TDC estimate with p=14 and y=2.
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Figure 5 Average singular values of prewhitened (voiced)
speech segment using 100 independent noise realizations and
SNR=5dB. The rank revealed in Lx is p = 14 (without re-
finement).
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Figure 6 The ratios corresponds to the example in Fig. 5
without refinement, and a case with 5 refinement steps (*).
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Figure 7 The average canonical angles sin(f;) between the
14 dimensional signal subspaces obtained from the QSVD and
the RRULLVD, respectively. The signals correspond to the
example in Fig. 6 without refinement (o) and with 5 steps (*).
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Figure 8 Average SNR corresponding to four different re-
constructed noisy (voiced) speech segments using a TDC es-
timator with v = 2, p = 14 and SNR=5dB. The (*) marks
are the QSVD based estimates and voiced/unvoiced frames
are given by solid/dashed lines. The average is taken over 100
independent noise realizations.
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