
RAPID PROTOTYPING OF AN ADAPTIVE NOISE CANCELER USING GRAPE

Luc De Coster, Rudy Luuwereins, J.A. Peperstraete

Katholieke Universiteit Leuven, Department ESAT
Kardinaal Mercierlaan 94, B-3001 Heverlee, Belgium

Tel.: +32-16-32 18 19, Fax: +32-16-32 19 86
email: luc.decoster@esat.kuleuven.ac.be

ABSTRACT

In this paper we describe the rapid prototyping of an
adaptive noise canceler using the Graphical RApid
Prototyping Environment (GRAPE), developed at our
laboratory. It is an environment which facilitates the real-
time emulation and implementation of synchronous DSP
applications on heterogeneous target platforms consisting
of DSPs and FPGAs. Our work demonstrates the
feasibility of real-time prototyping using a

multiprocessor and a powerful programming framework.

1. INTRODUCTION

The ever increasing complexity and data rates of DSP
applications often demand application-specific ICs and
hardware. Development costs for such hardware and
ASICs are high, so algorithms should be thoroughly
tested and optimised before implementation at all design
stages. Nowadays, most tests and optimisations are

performed by analysis and simulation tools on
workstations. Application prototypes are worked out
qnly during the last design stage. However, if we
prototype in the earlier stages of the design, we can
w test more parameters in a shorter time
n optimise parameters under real-time conditions
n evaluate an algorithm’s subjective qualities, e.g. by

listening to the actual result of the algorithm
n prove the feasibility of a design’s implementation
Despite these benefits, prototyping is generally not used
at the earlier design stages because designing dedicated
prototyping hardware is time consuming and expensive.
We propose an alternative: a rapid-prototyping set-up
with general-purpose hardware to minimise the
development cost and advanced programming tools to
reduce the programming time. The general-purpose
hardware consists of commercial DSP processors and
FPGAs linked together to form a powerful,
heterogeneous multiprocessor. Our prototyping

environment GRAPE [I] permits easy programming,
compiling, simulation, debugging, and testing of real-
time DSP algorithms on the multiprocessors.
In this paper we demonstrate the feasibility of this
approach with a real-live example: the adaptive noise

canceler. In section II we briefly describe the adaptive
noise canceler algorithm. Section III describes the
implementation of the algorithm, using the GRAPE
prototyping environment. Section IV describes the set-up
for the demonstration. Finally we draw some
conclusions.

2. ADAPTIVE NOISE CANCELLING

Adaptive noise canceling is a basic application in the
field of digital signal processing [2]. A signal corrupted
by noise is filtered on the basis of a reference of that
noise. Car telephones fit in this model. The speaker’s
signal is so heavily corrupted by the noise caused by
engine and tires that it is not understandable anymore.
Since the noise source changes within time (e.g. different
velocity, different type of road) an adaptive filtering is
required. The filter adjusts itself automatically (i.e. filter
coefficients). Figure I sketches the adaptive noise
canceler.

Primaly

r-

-y Input svstem
Slgnal -DD :+I-0 + output
source

x, I
I n

Adaptive noise canceler

Figure 1: Adaptive noise-cancelling concept.

3. RAPID PROTOTYPING OF AN ADAPTIVE
NOISE CANCELER USING GRAPE-II

In the following steps we briefly describe the different
phases of GRAPE’s design flow.

3.1. Specification of Application and Target

In the specification phase, the application is described
using an extended data flow model, called cycle-static
data flow (CSDF) [3]. In short, the application is

IwAENC’97 89

represented as a directed graph G=(N,E), where the
nodes N represent computation tasks, and the edges E the
communication of the results (called rokens) from a
producing to a consuming task. The functionality of the
nodes is specified in a conventional high level language
like C or VHDL. The number of tokens a task produces
respectively consumes during an execution phase of a
task is known at compile time, allowing for a compile
time analysis of the graph in the next phases of GRAPE’s
design flow and leading to highly efficient run-time code.
The adaptive noise canceler algorithm is split in
following computation tasks: two first-order high-pass
filters for removing DC values on both inputs, two delay
lines for allowing to align both inputs, the actual filter -
hierarchically specilied by two subfilters to increase
inherent parallelism - and finally some ‘glue’ tasks (i.e.
duplication tasks and addition/subtraction tasks). Still in
GRAPE’s specification phase, the target architecture is
specified as a connectivity graph, with an indication of
the amount and type of resources each processing device
possesses. We used a general-purpose, commercially
available multiprocessor with two TMS32OC40 DSP
processors as target hardware. The concerning board is
plugged in a host PC, running the GRAPE environment.

3.2. Verification via Simulation

After the application has been specified, it should be
verified for functional correctness. Therefore GRAPE
provides a simulation path. A single-processor program
is automatically generated which can be compiled and
executed on a workstation or PC. The input stimuli are
read from file during simulation, and the outputs are
written to files. In this way simple programming bugs can
be detected in an early stage.

3.3. Performance Estimation

In the third phase, the amount of resources required by
each of the tasks when executed on each of the
processing devices, is estimated. A tuple - consisting of
the execution time and the memory usage - is
determined for each such combination. For example, a
delay task with a maximal delay of 100 samples on a
TMS32OC40 takes 26 cycles and 128 words.

3.4. Mapping of Application on Target

Next, the application is mapped onto the target hardware.
In this phase, each task is assigned to a specific
processing device. Then a communication path is
established automatically and transparent for each edge
in the application’s graph. Finally a compile-time
schedule order is determined for each device that
minimises the total makespan (i.e. latency) while meeting
the other constraints (i.e. memory usage) (Figure 2).

Figure 2: Screen dump of the scheduler. The Gantt chart
visualises the schedule of the application tasks and the
communication tasks on the two C40 devices. In a
performance window the numerical feedback is given.

3.5. Code Generation

In GRAPE’s fifth design phase, code in C is generated
for each of the processing devices. This phase of ‘gluing’
gets much attention currently. For example, it considers
whether to inline or call the tasks from the main loop and
it invokes specific and optimal buffer implementations.

3.6. Real-time Emulation

The final phase is the loading and the running of the
application on the target hardware, i.e. the real-time
emulation (Figure 3). A major feature in the GRAPE
environment is the availability of run-time parameter
modification. Following six design parameters for the
canceler application can be tuned at this stage: the filter
length, the adaptation constant, the lengths of the delays
and the cut-off frequency of the HP filters. But also
‘back’ parameters to the host PC are possible. Snapshots
of the filter coefficients allow for objective information
(i.e. the impulse response of the filter), next to the
subjective experience of the audio output.

IWAENC’97
90

Figure 3: Screen dump of the loader. A hierarchically
specified application is mapped on a DSP multiprocessor
board. By means of slider bars on the PC, parameters of
the application can be tuned at real time. Sample rate can
be set and synchronity is monitored in the losses field.

4. DEMONSTRATION

Figure 4 gives the set-up of the demonstration. For ease
of presenting, a real situation was recorded once. In the
demo the situation is played back and processed at real
time. The real situation consisted of a room in which two
speakers - one for the speech signal and one for the
noise signal - and a microphone where placed. The
reference signal for the noise was the noise signal itself.
So the adaptive filter should correspond with the
concatenations of the transfer functions of speaker, room
and microphone.

1.. - I
1

XT- - ,T”
&+-D -, - .-

RF-

Figure 4: Set-up of the demonstration. For ease of
presenting, a real situation was recorded once. In the
demo. the situation is played back and processed at real-
time.

The demo consist in playing back the recorded signals,
feeding them to the application and comparing the result
with the original signal. The set-up allows to demonstrate
the GRAPE environment. First on overview on the
different phases in the design are presented on the PC.
Thereafter the real-time emulation is shown. Parameters
are changed; snapshots of the filter coefficients are taken
and presented by figures on the PC; while listening to the
audio result gives the subjective feedback.
Practically, we only need a table to put the demo system
on. Since the noise produced is disturbing, a separate
room is advisable.

5. CONCLUSION

In this paper we showed the feasibility of our rapid
prototyping strategy. It turns out the main benefit of this
approach is the support for automatic routing and
automatic code generation for the multiprocessor. Also
the run-time parameter modification is essential for the
tuning of the application. It rcalises much gain compared
with time-consuming simulations on workstations.

Other prototype realisations with GRAPE can be found

in [41,[51,[61,[71.

REFERENCES

[11 R. Lauwereins, M. Engels, M. AdC, J.A. Peperstraete,
“Grape-II: A System-Level Prototyping Environment for
DSP Applications”, IEEE Computer, pp. 35-43, Feb.
1995
[2] B. Widrow, S.D. Stearns, “Adaptive Signal
Processing”, Prentice-Hall, 1985
[3] G. Bilsen, M. Engels, R. Lauwereins, J.A.
Peperstraete, “Cycle-Static Dataflow”, IEEE
Transactions on Signal Processing, Vol. 44, No. 2, pp.
397-408, Feb. 1996
[4] M. Engels, T. Meng, “Rapid Prototyping of a Real-
Time Video Encoder”, IEEE International Workshop on
Rapid System Prototyping, Grenoble, France, pp. X-15,
June 20-23, 1994
[5] E. Isikli, M. Engels, R. Lauwereins, J.A.
Peperstraete, “A Rapid Prototyping Example Using
GRAPE-II: An Adaptive Antenna Beamformer for GSM
Base Stations”, IASTED International Conference on
signal and image processing and applications, Annecy,
France, pp. 110-113, June 12-14, 1996
[6] P. Wauters, S. Van Gerven, M. Engels, R.
Lauwereins, J.A. Peperstraete, “Rapid Prototyping of an
adaptive Speech Beamformer using GRAPE-II”,
International Conference on Signal Processing
Applications & Technology, Boston, MA, USA, pp.
1678- 1682, Oct. 24-26, 1995
[7] R. Lauwereins, M. AdC, P. Vandaele, M. Moonen,
“Prototyping Quadrature Amplitude Modulation for
Two-way Communication on CATV Networks”,
International Conference on Signal
Applications & Technology, Boston, MA,
1570- 1574, Oct. 8- 10, 1996

Processing
USA. pp.

ACKNOWLEDGEMENTS

Luc De Coster is a Research Assistant and Rudy
Lauwereins a Senior Research Associate of the Fund for
Scientific Research - Flanders (Belgium). The GRAPE
project is partly sponsored by the Belgian Interuniversity
Pole of Attraction IUAPJO, 4/20, 4124, by an NFWO
Krediet aan Navorsers, by the Esprit OMI DISSAP-II
project 8068, by the European Space Agency project on
Multi-DSP architectures, by the Texas Instruments Elite
University Program, and by the IWT Information
Technology project Isis. K.U.Leuven-ESAT is a member

of the DSP Valley TM network.

IWAENC’97
91

