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ABSTRACT 

Spectral subtraction is a popular method for speech 
enhancement, if the speech signal is corrupted by 
additive noise. It is based on the manipulation of 
the magnitude of the noisy speech spectrum. Previ- 
ous realizations used linearly spaced frequency trans- 
formations. We propose the application of two fil- 
terbanks with bark-scaled frequency bands: a dis- 
crete wavelet transform and a nonuniform polyphase 
filterbank. The enhancement results are compared 
to those obtained with uniform spectral transforma- 
tions. 

1. INTRODUCTION 

The method of spectral subtraction is widely used for 
speech enhancement. It is applied to speech signals, 
which are disturbed by additive noise with slowly 
varying spectral characteristics. A practical applica- 
tion for example is hands-free communication in noisy 
environments. Spectral subtraction is performed by 
subtracting a mean magnitude of the noise spectrum 
from the disturbed spectrum to obtain an estimation 
of the magnitude of the noise-free spectrum. 

The method may be interpreted as spectral equal- 
izing of the noisy speech signal by applying spectral 
weights to the transformed signal. In practical appli- 
cations the spectral analysis and synthesis is usually 
performed by a Discrete Fourier Transform and in- 
verse transformation [l] with overlapadd techniques 
or by analysis and synthesis filterbanks, for example 
polyphase filterbanks [2]. The systems have a uni- 
formly spaced division of the frequency domain. 

In speech recognition systems the spectral anal- 
ysis is successfully performed using spectral trans- 
formations with bark-scaled frequency bands [5]. 
This fact motivated the investigation of nonuniform- 
bandwidths filterbanks with respect to the spectral 
analysis of the human ear for spectral equalizing 
methods. 

We applied two different types of filterbanks to 
approximate a bark-scaled frequency spacing: 

1. A non-critically decimated discrete wavelet fil- 
terbank. 

2. A modified polyphase filterbank with allpass 
transformations in the polyphase network. 

The structures and functionalities of the filterbanks 
are described and the influence to the performance 
of the spectral subtraction rules due to BOLL [l] and 
EPHRAIM AND MALAH [4] are shown in experimental 
results. 

2. SPECTRAL SUBTRACTION 

The basic idea of spectral subtraction is applied to 
noisy speech signals with additive noise 

z(k) = s(k)+n(k) ) (1) 

where z(k) denotes the noisy signal, s(k) the speech 
signal, and n(k) the noise. The estimation of 
the noise-reduced speech spectrum is obtained by 
subtracting an estimated mean spectral magnitude 
]N(ejo)] of the noise from the spectral magnitude 
]X(ej”)( of the noisy signal: 

S(ej”) = (IX(ejn)l - IN(ejn)l) ejv=(*) , (2) 

where ~~~(02) is the phase of the disturbed speech sig- 
nal. X(ejo) and iV(ej”) are the Fourier transforma- 
tions of z(lc) and n(k). 

The mean magnitude of the noise spectrum is as- 
sumed to be estimated e.g. during speech pauses us- 
ing a voice activity detector or by spectral-minima 
tracking. 

As denoted in the introduction, equation (2) may 
be interpreted as spectral weighting of the noisy 
speech signal: 

$(ejn) = G(ej*) - X(ej”) , (3) 

where 

G(ejn) = Ix(e’“>l - IN(e’“)I 
l-W”>l (4) 
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Negative values of G(ej*) are estimation errors and 
therefore forced to zero. 

A major drawback of spectral-subtraction sys- 
tems is the remaining of residual tonal noise with 
unnatural sound. More sophisticated spectral weight- 
ings lead to a reduction of this phenomenon [4]. 

3. WAVELET TRANSFORM 

As an alternative to the Fourier transform the wavelet 
transform can be applied for spectral analysis of a 
signal. The continuous wavelet transform (CW’T) of 
a signal z(t) is given by 

W$(b,a) = ]a]-+ /_+_, z(t)+* (9) dt , (5) 

where q!(t) is the prototype wavelet. By shifting 
and scaling t,!(t) with the parameter a and b, all ba- 
sis functions t+!+,,a(t) = ]a]-&?+!~ ($$) are obtained. 
Large values of a cause $b+(t) to become a lower- 
frequency and dilated version of $(t). For small a 
values, the function &,,a(t) becomes a contracted ver- 
sion of $(t) with higher frequency components. As 
a consequence, the resolution in the time-frequency 
plane is not constant. For high frequencies the reso 
lution of the wavelet transform is sharp in time but 
poor in frequency, while for small frequencies the res- 
olution is sharp in frequency and poor in time. 

In the frequency domain the wavelet transform 
can be interpreted as a filterbank with bandpasses 
whose bandwidths Awi increase monotonously with 
the center frequency woi. It can be shown that 
the relative bandwidth & = 3 is independent on 

the parameter a, so the wavelei transform is called 
‘constant-Q’ analysis. This is very similar to the fre- 
quency analysis of the human ear. 

The digital realization of (5) requires the dis- 
cretization of the parameters a and b. Usually they 
are chosen to be on a dyadic grid. Then a is a power 
of 2 and b is dependent on a, so that a,,, = 2”, b,, = 
a,nT, where m,n E Z . On this basis the wavelet 
transform in application to a discrete signal z(k) be- 
comes 

w$(2mn, 2m) = 2-F C z(k)+* (2-mk - n) , 
k 

(6) 

and realizes an octave analysis with different sam- 
pling rates in each octave. 

To increase the resolution in frequency by a factor 
M, it is possible to use M dyadic wavelet analyses 
(voicing) each with the scaled prototype wavelet 

?p(k) = 2-&/42-h), j = 0 ,..., (M-l) . (7) 

The non-critically decimated wavelet filterbank 
is based on the A-Trous algorithm [6] and is one 
realization of (6). 

In figure 1 the realized wavelet-filterbank struc- 
ture with p+ 1 octaves and M voices per octave is 
shown. The bandpass filters gi(n) , i = 0, .., (M-l), 

I 

Figure 1: structure of the realized wavelet filterbank. 

are the prototype wavelets for each dyadic wavelet 
analysis. The decimation of 2’ in the I-th octave as 
shown in figure 1 allows the use of the same filter 
within each octave. The function of the lowpass fil- 
ter fa(n) may be interpreted as an antialiasing-filter. 

The synthesis filterbank interpolates the sub- 
bands to the next higher sampling rate and adds the 
result to the output of the next octave, taking care 
of the correct delay as produced in the analysis part. 

4. MODIFIED POLYPHASE 
FILTERBANK 

The analytical description of a polyphase filterbank 
leads to a transfer function 

M-l t&--l 

Hj(z) = c c h(pM + p)[z-l]PM+Pe-ji~P, 
p=o p=o 

(8) 

i = 0. . . (M-l), with bandpass characteristic for each 
channel, where h(k), k = 0.. . (I,,-1) is the prototype 
lowpass. The replacement of the delays 2-l with an 
allpass of degree one 

CKZ + 1 
HA(Z) = - 

.%+a’ 
-1 < cr < 1, (9) 
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performs a transformation of the abscissa of the 
transfer function while the attenuation is not dis- 
turbed [3]. For -1 < Q < 0 the bandwidths of 
the filters increase monotonously with the center fre- 
quency. With a suitable choice of the parameter a 
the frequency resolution of the human ear can be ap 
proximated. In figure 2 the structure of the allpass- 
transformed polyphase filterbank is shown. The long 

Figure 2: structure of the realized allpass- 
transformed polyphase filterbank. 

cascade of allpasses with degree one produces an out- 
put signal s^(lc) whose phase is disturbed. The cor- 
rection of the phase requires an additional filterop 
eration. We choose a nonrecursiv filter whose im- 
pulse response is the limited time-inverted impulse 
response of the modified polyphase filterbank. 

5. EXPERIMENTS 

The experiments were carried out using the above 
described filterbanks. 

The wavelet filterbank was implemented with 7 
octaves and 10 voices per octave (p= 6 and M = 10 in 
figure 1). This choice leads to a sufficient frequency 
resolution with 70 subbands. The prototype filter is 
the sampled complex Morlet wavelet 

(10) 

[7] with 101 coefficients. The interpolation was im- 
plemented by FIR filters of length 71. 

The modified polyphase filterbank has M = 256 
channels. The linear-phase prototype lowpass filter 
was chosen to a length of L, = 1024. The parameter 

a was set to approximate the frequency analysis of 
the human ear. Because of increasing bandwidths to 
higher frequencies the decimation factor P in figure 
2 has to be limited to avoid aliasing. Listening tests 
showed that the factor T = M/4 leads to a sufficient 
quality of the output signal. 

We examined the enhancement system with the 
spectral-subtraction rule due to BOLL [l] and the sub- 
traction rule due to EPHFUIM AND MALAH [4]. 

In a first step we applied the nonuniform filter- 
banks to the basic spectral-subtraction scheme of 
BOLL. In this case a high amount of residual noise 
occurs and the repercussion of the filterbanks on the 
enhancement system can be well understood. The 
corresponding results by the application of different 
filterbanks are visualized by four spectrograms in fig- 
ure 3. The speech signal was recorded in a running 
car with a sampling frequency of 11.025 kHz. 

The first spectrogram shows the frequency repre- 
sentation of the original noisy speech signal. Most of 
the noise energy is located in the low-frequency area. 
This is characteristic for the car environment, where 
the noise is mostly produced by the engine. 

To demonstrate the differences between uniform 
and nonuniform filterbanks the second spectrogram 
contains the frequency representation of the enhanced 
signal by using the allpass-transformed polyphase fil- 
terbank with a = 0. Thus no frequency warping has 
been done and the filterbank is uniform. In this case 
the decimation was performed with a factor 2 above 
critical subsampling. Especially in speech pauses 
the enhanced signal contains a lot of randomly dis- 
tributed spectral peaks, which produce undesirable 
tonal residual noises. 

The third spectrogram shows the result using the 
allpass-transformed polyphase filterbank with a = 
-0.49 and the fourth spectrogram the application 
of the above described wavelet filterbank as spectral 
transformation. 

The different frequency resolutions of the filter- 
banks are reflected in the structures of the tonal resid- 
uals especially in speech pauses. In the second spec- 
trogram the spectral peaks have all the same band- 
widths and the same duration in time, while in the 
third and fourth spectrogram the bandwidths of the 
tonal residuals increase to higher frequency, but the 
durations in time decrease. Below 1 kHz the influence 
of the higher resolution becomes obvious. In this area 
the frequency structures are more detailed but the 
time resolution badly smears. In the high-frequency 
area the relations are reversed. Note that the amount 
of residual spectral peaks in higher frequency areas is 
significantly reduced using the wavelet filterbank. 

In informal listening tests the residual noise pro- 
duced by the nonuniform based enhancement systems 
was judged to be more pleasant than in the uniform 
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solution. Furthermore the speech sounds more natu- 
ral. In a direct comparison we give preference to the 
wavelet-based system. 

In a second step we investigated more sophis- 
ticated spectral-subtraction rules with less residual 
noises. The application of the spectral-subtraction 
scheme of EPHRAIM AND MALAH leads to equivalent 
subjective results. Because the amount of residual 
noises is lower then in the case of BOLL’S procedure, 
the advantages of the non-uniform spectral analysis 
can be used to adjust the parameters to achieve less 
distortion of the speech signal. 

6. CONCLUSION 

The spectral subtraction method in conjunction with 
two filterbanks with nonuniform frequency bands is 
proposed. Informal listening tests stated the subjec- 
tive preference of filterbanks with nonuniform band- 
widths for spectral subtraction systems. The wavelet 
filterbank was judged to be superior to the allpass- 
transformed polyphase filterbank with the price of 
higher complexity in implementation. 
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PI 
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Figure 3: comparison of spectrograms. 
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